K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

A A A B B B C C C D D D M M M 1 2

Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(cmt)

\(\widehat{MAB}=\widehat{MDC}\)

MB = MC(vì M là trung điểm của BC)

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)

      \(AB=CD\)(hai cạnh tương ứng)

Ta có : AC > AB, AB = CD nên AC > CD

\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)

Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

6 tháng 3 2018

* Xét ΔABM và ΔMCE: AM=ME

\(\widehat{AMB}=\widehat{CME}\)

BM=MC

⇒ ΔABM = ΔMCE (c.g.c)

⇒ CE=AB ( 2 cạnh tương ứng)

\(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)

Vì AB<AC

⇒ CE<AC

Xét ΔACE có: CE< AC

\(\widehat{MAC}= \widehat{CEM}\)

\(\widehat{BAM}=\widehat{CEM}\) (cmtrn)

\(\widehat{BAM}=\widehat{MAC}\) (đpcm)

6 tháng 3 2018

M A B C E // // / /

5 tháng 5 2019

A B C D M

a, xét tam giác AMB và tam giác  CMD có : MB = MD (gt)

AM = CM do AM là trung tuyến

góc AMB = góc CMD (đối đỉnh)

=> tam giác AMB = tam giác CMD (c-g-c)

=> AB = CD (đn)

Lấy D sao cho M là trung điểm của AD

Xét tứ giác ABDC có

Mlà trung điểm của AD
M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=CD

=>CD<AC

=>\(\widehat{CAM}< \widehat{CDA}\)

mà \(\widehat{CDA}=\widehat{BAM}\)

nên \(\widehat{CAM}< \widehat{BAM}\)

22 tháng 3 2020

Bn ơi vào phần CHTT ý,có nhiều lm

22 tháng 3 2020

A B C E M F

ZXVXCVXCVV

XÉT TAM GIÁC ABM :Â=90o

=>BM>AB

=>BE+EM>AB(1)

HAY BF-MF>AB(2)

AME=CFM(CH-GN)

=>EM=MF(3)

TỪ 1 2 3 => 2AB< BE+BF

=>\(AB< \frac{BE+BF}{2}\)