Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì E là trung điểm của AB
F là trung điểm của AC
=>EF là đường trung bình của △ABC
=> EF=1/2BC và EF//BC
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC
a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA (1)
AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA (2)
TỪ (1) và
a) Xét tam giác ABI và tam gaic ACI có:
AB = AC
IB= IC ( vì I là trg điểm BC )
AI: cạnh chung
=> tam giác ABI = tam giác ACI
b) Ta có: tam giác ABI = tam giác ACI (theo câu a) => \(\widehat{BIA}=\widehat{AIC}\)( hai góc tương ứng) hay \(\widehat{BID}=\widehat{DIC}\)
Xét tam giác BID và tam giác DIC có:
DI: cạnh chung
\(\widehat{BID}=\widehat{DIC}\) ( cmt )
IB = IC ( gt)
=> tam giác BID = tam giác CID ( c.g.c)
=> DB= DC ( 2 cạnh tương ứng)
c)
a: Xét ΔAMI và ΔCMB có
MA=MC
góc AMI=góc CMB
MI=MB
Do đó: ΔAMI=ΔCMB
b: Xét tứ giác ABCI có
M là trung điểm chung của AC và BI
nên ABCI là hình bình hành
Suy ra: AI//BC và AI=BC
Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
Suy ra: AK//BC và AK=BC
c: Ta có: AK//BC
AI//BC
Do đó: K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI