Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Bài 1: Ta có hình vẽ sau:
B A C M E
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
O A B D C x y E
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a)Xét tam giác AKB và tam giác AKC
Có: AB=AC
BK=KC
AK chung
=>tam giác AKB=tam giác AKC
b)tam giác AKB=tam giác AKC
=>góc AKB=góc AKC
Mà hai góc này là 2 góc kề bù
=>góc AKB=góc AKC=90 độ
=>AK vuông góc với BC
c) tôi đang nghĩ nhé bn
hjhj
t tôi nhé
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
A B C K \
a) \(\Delta AKB\)và \(\Delta AKC\)có:
AB = AC (theo GT)
BK = CK (vì K là trung điểm của BC)
AK: cạnh chung
Do đó: \(\Delta AKB=\Delta AKC\)(c.c.c)
Suy ra: \(\widehat{AKB}=\widehat{AKC}\)(cặp góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)
Nên \(\widehat{AKB}=\frac{180^o}{2}=90^o\)
Vậy \(AK\perp BC\)
a,xét tam giác ABK và tam giác ACK có: AB=AC(GT) AK chung BK=CK CẢ 3 ĐIỀU TRÊN SUY RA TAM GIÁC ABK=TAM GIÁC ACK (C.C.C) SUY RA GÓC AKB=GÓC AKC (CẶP GÓC TƯƠNG ỨNG).MẶT KHÁC GÓC AKB+GÓC AKC=18O ĐỘ .SUY RA AKB=AKB=180:2=9O ĐỘ SUY RA AK VUÔNG GÓC VS BC
cho tam giác ABC cân tại A.trên AB lấy M trên AC lấy N sao cho BM=CN.kẻ MD và NE vuông góc vs BC.CM a,BD=CE b,ID=IE
Ừ CÁI này chị làm được nè, nhưng đợi khi nào lên lớp 7, chị bày cho nha .Học giỏi nhae........................Tự mà làm đi chớ đi hỏi người ta hả, có tin chị đi ns thầy cô ko hả.Bực mình, em với út thế này đây ak , học thì không lo học, suốt ngày chỉ lên đây đăng câu hỏi cho người ta trả lời .Chị phạt đó nhae. Bực cả mình ko đập là ko yên rồi đây !!!!!!!!!!!@Thái Sơn Long
tự lm ik chú dưg cs mk đăng bài lênn hs
P/s giống tui hhihi
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
a) Xét \(\Delta\)AKBvà \(\Delta\)AKC có
AK là cạnh chung
AB = AC ( gt )
\(\widehat{BAK}\) = \(\widehat{KAC}\) ( vì K là trung điểm của BC )
\(\Rightarrow\) \(\Delta\)AKB = \(\Delta\)AKC
b) \(\rightarrow\) KB = KC ( 2 cạnh tương ứng )
mà \(\widehat{AKB}+\widehat{AKC}=180^O\) ( 2 góc kề bù )
\(\Rightarrow\) KB = KC = 180 : 2 = 90o
\(\Rightarrow\) AK \(\perp\) BC
c) bn ghi lỗi
d) k lm đc vì tùy thuộc câu c nha bn