Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên BC lấy G sao cho DG // AC
Dễ dàng suy ra \(\Delta BDG\approx\Delta BAC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{DB}{DG}\)(1)
Vì EC // DG nên áp dụng định lý Thalès vào tam giác KDG, ta được:
\(\frac{KE}{KD}=\frac{EC}{DG}\)hay \(\frac{KE}{KD}=\frac{BD}{DG}\)(vì BD = CE (gt)) (2)
Từ (1) và (2) suy ra \(\frac{KE}{KD}=\frac{AB}{AC}\left(đpcm\right)\)
Qua D vẽ DH // với AC ( H thuộc BC )
ta có tam giác BDH ~ tam giác BAC
suy ra BD/DH=AB/AC
áp dụng dlý talét vào tam giác KDH ta có
KE/KD=CE/DH
mà CE=BD
suy ra KE/KD=BD/DH=AB/ACdpcm
Bạn tự vẽ hình:
Lấy I thuộc BC sao cho EI//AB :
Theo định lí Thales ta có:
\(\left\{{}\begin{matrix}\dfrac{IE}{CE}=\dfrac{AB}{AC}\\\dfrac{IE}{BD}=\dfrac{KE}{KD}\end{matrix}\right.\)mà BD=CE nên \(\dfrac{AB}{AC}=\dfrac{KE}{KD}\left(đpcm\right)\)