Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
câu a bạn giải rồi nên mình không giải lại nha ~
b) Xét tứ giác MPEN, có:
ME và NP là 2 đường chéo cắt nhau tại H
mà H là trung điểm ME và NP
=> tứ giác MPEN là hình bình hành
Xét tam giác MAH và tam giác EBH, có:
MA = BE (gt)
góc AMH = góc HEB (so le trong của MP // NE)
HM = HE (gt)
=> tam giác MAH = tam giác EBH (c-g-c)
=> góc MHA = góc EHB
mà góc MHA + góc AHE = 180 độ (vì M, H, E thẳng hàng)
=> góc EHB + góc AHE = 180 độ
=> góc AHB = 180 độ
=> 3 điểm A,H,B thẳng hàng (đpcm)
c) Xét tam giác NHE, có:
góc HNE + góc NHE + góc HEN = 180 độ ( tổng 3 góc trong tam giác)
=> 50 độ + góc NHE + 25 độ = 180 độ
=> góc NHE = 105 độ (đpcm)
Ta có: góc NHE + góc PHE = 180 độ (kề bù)
=> 105 độ + góc PHE = 180 độ
=> góc PHE = 75 độ
Xét tam giác HKE, có:
góc EHK + góc HKE + góc HEK = 180 độ (tổng 3 góc trong tam giác)
=> 75 độ + 90 độ + góc HEK = 180 độ
=> góc HEK = 15 độ (đpcm)
p/s: có chỗ nào không hiểu inb hỏi nà ~
A B C M a, Vì ABC cân => AB = AC
=> góc B = góc C
mà M là tđ BC => BM = MC
Xét tam giác ABM và tam giác ACM có : AB = AC
góc B = góc C
BM = MC
=> tam giác ABM = tam giác ACM
b.Xét tam giác HBM và tam giác KCM có : BH = CK
góc B = góc C
BM = CM
=> tam giác HBM = tam giác KCM
c.
A B C M H K I
a)xet \(\Delta\)ABM và \(\Delta\)ACM có:
AB=AC(gt)
AM là cạnh chung
BM=CM(M là trung điểm BC)
nên \(\Delta\)ABM=\(\Delta\)ACM
b)ta có :AB=AC(gt)
nên \(\Delta\)ABC cân tại A
suy ra góc ABC=góc ACB
xét \(\Delta\)HMB và \(\Delta\)KMC có:
góc ABC=góc ACB
BH=CK(gt)
BM=CM(M là trung điểm BC)
nên \(\Delta\)HBM=\(\Delta\)KCM
c)ta có: BH=CK(gt)
mà AB=AC(gt)
nên AH=AK
suy ra \(\Delta\)AHK cân tại A
ta có:M là trung điểm BC(gt)
nên AM là đường trung tuyến
mà \(\Delta\)ABC cân
nên AM là đường cao,đường phân giác
nên góc BAM=góc CAM
suy ra AM là đường phân giác của \(\Delta\)AHK
mà \(\Delta\)AHK cân tại A
suy ra AM là đường cao
suy ra AM vuông với HK
mà AM vuông với BC(aM là đường cao)
suy ra HK//AM