K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc BAE chung

Do đó: ΔABC\(\sim\)ΔAED

b: Xét ΔFBD và ΔFEC có

\(\widehat{FDB}=\widehat{FCE}\left(=\widehat{ADE}\right)\)

góc BFD chung

Do đó: ΔFBD\(\sim\)ΔFEC

c: BD=AB-AD=4,8-3,2=1,6(cm)

EC=AC-AE=6,4-2,4=4(cm)

Ta có: ΔADE\(\sim\)ΔACB

nên DE/CB=AD/AC=3,2/6,4=1/2

=>DE=1,8(cm)

a: Xét ΔABC và ΔAED có

AB/AE=AC/AD

góc BAE chung

Do đó: ΔABC\(\sim\)ΔAED

b: Xét ΔFBD và ΔFEC có

\(\widehat{FDB}=\widehat{FCE}\left(=\widehat{ADE}\right)\)

góc BFD chung

Do đó: ΔFBD\(\sim\)ΔFEC

c: BD=AB-AD=4,8-3,2=1,6(cm)

EC=AC-AE=6,4-2,4=4(cm)

Ta có: ΔADE\(\sim\)ΔACB

nên DE/CB=AD/AC=3,2/6,4=1/2

=>DE=1,8(cm)

10 tháng 6 2020

a. Ta có: \(\frac{AB}{AC}=\frac{4,8}{6,4}=\frac{3}{4}\\ \frac{AE}{AD}=\frac{2,4}{3,2}=\frac{3}{4}\)

suy ra \(\frac{AB}{AC}=\frac{AE}{AD}\)

xét 2 tam giác ABC và AED có:

góc A chung

\(\frac{AB}{AC}=\frac{AE}{AD}\)(c/m trên)

suy ra 2 tam giác đồng dạng suy ra \(\widehat{ACB}=\widehat{ECF}=\widehat{ADE}\)

b. \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh) \(\Rightarrow\widehat{BDF}=\widehat{ECF}\)

xét 2 tam giác FDB và FCE có:

góc F chung

góc BDF = góc ECF (c/m trên)

suy ra 2 tam giác đồng dạng (g.g)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}=\frac{DB}{CE}\)

c. BD=AB-AD=4,8-3,2=1,6

CE= AC-AE = 6,4-2,4 =4

khi đó: 

\(\frac{FB}{FE}=\frac{FD}{FC}=\frac{1,6}{4}=\frac{2}{5}\Leftrightarrow\frac{FB}{FD+1,8}=\frac{FD}{FB+3,6}=\frac{2}{5}\)

suy ra hpt: \(\hept{\begin{cases}5FB=2FD+3,6\\5FD=2FB+7,2\end{cases}}\Leftrightarrow\hept{\begin{cases}5FB-2FD=3,6\\2FB-5FD=-7,2\end{cases}}\Leftrightarrow\hept{\begin{cases}FB=\frac{54}{35}\\FD=\frac{72}{35}\end{cases}}\)

13 tháng 6 2020

bằng 3455,67 nhé 

đúng 100% tk đúng cho mik

4 tháng 2 2021

a/

Ta có

ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)

b/

Ta có

AE=EF=6 cm (F đối xứng A qua E)

BE=AB-AE=8-6=2 cm

FB=EF-BE=6-2=4 cm

Do ED//BC nên

\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)

\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)