Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
a) Xét \(\Delta HBA\)và \(\Delta ABC\)
ta có \(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
nên \(\Delta HBA\)\(\Delta ABC\)(g - g)
b) Xét \(\Delta ABC\)ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=20\left(cm\right)\)
có \(\Delta HBA\)\(\Delta ABC\)
nên \(\frac{AH}{AC}=\frac{AB}{BC}\)và \(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow AH=9,6\left(cm\right);BH=7,2\left(cm\right)\)
c) Xét \(\Delta ABC\)
có AD là phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
mà có BD + CD = BC = 20
nên BD = \(\frac{60}{7}\)
d)có AK + KH = AH
suy ra KH = 6 (cm)
có
Lời giải:
a)
Xét tam giác $ABC$ và $HBA$ có:
\(\left\{\begin{matrix} \widehat{BAC}=\widehat{BHA}=90^0\\ \text{Chung góc B}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle HBA(g.g)\)
b) Từ kết quả hai tam giác đồng dạng phần a ta có:
\(\frac{AB}{BC}=\frac{HB}{BA}\Rightarrow AB^2=BC.BH\)
c)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=400\Rightarrow BC=20\) (cm)
Theo tính chất đường phân giác trong ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
\(\Leftrightarrow \frac{AD}{AC-AD}=\frac{3}{5}\Leftrightarrow \frac{AD}{16-AD}=\frac{3}{5}\)
\(\Rightarrow AD=6\) (cm)
d) Xét tam giác $BAE$ và $BCD$ có:
\(\left\{\begin{matrix} \widehat{ABE}=\widehat{CBD}(=\frac{\widehat{ABC}}{2})\\ \widehat{BAE}=\widehat{BCD}(=90-\widehat{ABC})\end{matrix}\right.\)
Do đó: \(\triangle BAE\sim \triangle BCD(g.g)\)
\(\Rightarrow \frac{BE}{BA}=\frac{BD}{BC}\Leftrightarrow \frac{BE}{BD}=\frac{BA}{BC}\)
Mà theo tính chất đg phân giác thì: \(\frac{BA}{BC}=\frac{DA}{DC}\Rightarrow \frac{BE}{BD}=\frac{DA}{DC}\)
hay \(BE.DC=DB.DA\)
Ta có đpcm.
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
A B C H E F 1 2
a) Vì AH \(\perp\) BC (gt)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\) (ĐN 2 đường thẳng \(\perp\))
Ta có: \(\widehat{C}+\widehat{A_1}=90^o\) (\(\Delta\)AHC vuông tại H do \(\widehat{AHC}=90^o\))
mà \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\widehat{BAC}=90^o\) do \(\Delta\)ABC vuông tại A)
=> \(\widehat{C}=\widehat{A_2}\)
Xét \(\Delta\)AHB và \(\Delta\)CHA có:
\(\widehat{AHB}=\widehat{AHC}\) (cmt)
\(\widehat{C}=\widehat{A_2}\) (cmt)
=> \(\Delta\)AHB ~ \(\Delta\)CHA (g.g)
b) Xét \(\Delta\)ABH và \(\Delta\)CBA có:
\(\widehat{ABC}=\widehat{AHB}\left(=90^o\right)\)
\(\widehat{B}\): chung
=> \(\Delta\)ABH ~ \(\Delta\)CBA(g.g)
=> \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (ĐN 2 \(\Delta\) ~)
=> \(AB\cdot CA=AH\cdot CB\) (t/c TLT)
c) Xét \(\Delta\)ABC vuông tại A (gt) có:
\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)
=> \(BC^2=9^2+12^2=225\)
=> BC = 15cm
Ta có: \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (cmt)
=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2cm\)
Xét \(\Delta\)AHB vuông tại H (cmt) có:
\(AH^2+HB^2=AB^2\) (ĐL Pi-ta-go)
=> \(BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)
=> BH = 5,4cm
Lại có: \(HC=BC-BH=15-5,4=9,6\)cm
a) Xét ΔABK và ΔCBA có:
+ góc AKB=góc CAB=90 độ
+ góc ABK chung
=>ΔABK~ΔCBA (g-g)
b) Xét ΔAKB và ΔCKA có:
+ góc AKB=góc CKA=90 độ
+ góc KAB=góc KCA (cùng phụ với góc B)
=> ΔAKB~ΔCKA (g-g)
=> AK/ KC=KB / AK
=> AK^2=KB. KC
bc=20 bn nhá