Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 0 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
0.P( 0 + 2 ) = (4 - 9). P(0) suy ra 5. P(0) = 0 hay P(0) = 0. Vậy x = 0 là nghiệm của đa thức.
Thay x = 3 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
3.P(5) = (9 - 9 ).P(3) suy ra P(5 ) = 0 . Vậy x = 5 là nghiệm của đa thức P(x).
Tương tự với x = - 3 ta có:
-3. P(-1) = (9 - 9). P(-3) suy ra P(-1) = 0. Vậy x = -1 cũng là nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 3 nghiệm là: 0; 5; -1.
b, Giả sử P(x) có nghiệm nguyên là a. Khi đó sẽ có đa thức g(x) để: P(x) = g(x) (x - a).
P(1) = (1-a).g(1) là một số lẻ suy ra 1- a là số lẻ .Vậy a chẵn.
P(0) = a .g(0) là một số lẻ , suy ra a là số chẵn.
a không thể vừa là số lẻ, vừa là số chẵn. Ta có mâu thuẫn.
Vậy ta có ĐPCM.
Bùi Thị Vân ơi, khúc đầu câu a) là thay x=0 vài x.P(x+2) = (x^2-9) P(x) mà bạn thay bị sai thì phải.Bạn xem lại giúp mình
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)
\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)
\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)
\(\rightarrow\left(-1\right).f\left(3\right)=0\)
\(\rightarrow f\left(3\right)=0\)
\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)
\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)
\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0=\left(-1\right).f\left(0\right)\)
\(\rightarrow f\left(0\right)=0\)
\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)
\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)
\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0=1.f\left(2\right)\)
\(\rightarrow f\left(2\right)=0\)
\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{Vậy ...}\)