\(\int\)(x)=x3+mx+n với m,n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

4 tháng 7 2019

Bài 1:

a) \(M=x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)

Hay \(M\ge\frac{3}{4};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)

b) \(N=3-2x-x^2\)

\(=-x^2-2x+3\)

\(=-\left(x^2+2x+1\right)+4\)

\(=-\left(x+1\right)^2+4\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)

Hay \(N\le4;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)

                        \(\Leftrightarrow x=-1\)

Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)

Bài 2:

Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)

Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)

Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)

\(=\left(3k+1\right).3t+\left(3k+1\right).2\)

\(=9kt+3t+6k+2\)

\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .

\(\)

4 tháng 7 2019

1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4)  + 3/4 = (x + 1/2)2  + 3/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x

Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2

Vậy Mmin = 3/4 tại x = -1/2

b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4

Ta luôn có: -(x + 1)2 \(\le\)\(\forall\)x

=> -(x + 1)2 + 4 \(\le\)\(\forall\)x

Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1

Vậy Nmax = 4 tại x = -1

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

3 tháng 3 2020

2.1

a) Áp dụng định lý Bezout:

\(P\left(x\right)⋮2x+3\)

\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)

hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)

\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)

\(\Rightarrow m=12\)

Vậy m = 12 

31 tháng 10 2020

a) Đặt \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(\Rightarrow A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\)

\(\Rightarrow A=\left(t+y^2\right)\left(t-y^2\right)+y^4=t^2-y^4+y^4\)

         \(=t^2=\left(x^2+5xy+5y^2\right)^2\)là số chính phương ( đpcm )

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !