K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

a)

Gọi đa thức dư là A(x)

Vì đa thức dư P(x) có bậc là 3

nên đa thức dư có bậc không quá 2

hay đa thức dư có dạng là \(ax^2+bx+c\)

Ta có: Q(x)=\(A\left(x\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+ax^2+bx+c\)

Với x=1 thì a+b+c=6(1)

Với x=-1 thì a-b+c=-4(2)

Với x=0 thì  c=1

Thay c=1 vào (1), (2), ta được:

a+b=5 và a-b=-5

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5-b-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-2b=-5-5=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-5=0\\b=5\end{matrix}\right.\)

Vậy: đa thức dư có dạng là 5x+1

b) Để Q(x) chia hết cho P(x) thì 5x+1=0

\(\Leftrightarrow5x=-1\)

hay \(x=-\dfrac{1}{5}\)

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

8 tháng 12 2016

x2+(x+y)2=(x+9)2

x2+x2+2xy+y2=x2+18x+81

x2+x2+2xy+y2-x2-18x-81=0

x2+2xy+y2-18x-81=0

het biet roi

8 tháng 12 2016

Ta có: x^2+(x+y)^2=(x+9)^2

=>x^2+x^2+2xy+y^2=x^2+18x+81

=>2x^2+2xy+y^2=x^2+18x+81

=>2x^2+2xy+y^2-x^2-18x-81=0

=>(x^2+2xy+y^2)-18(x+1)-99=0

=>(x+1)^2-18(x+1)-99=0

=>(x+1)(x+1-18)-99=0

=>(x+1)(x-17)-99=0

=>(x+1)(x-17)=99

=>(x+1)(x-17)=1*99=3*33=......

=>x=tự tính nốt

=>

10 tháng 12 2017

Dùng thêm bớt

1 tháng 3 2020

\(P\left(x\right)=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\). đặt \(y=x^2+8x+9\)

Ta đc \(P\left(x\right)=\left(y-2\right)\left(y+6\right)+a=y^2+4y-12+a\)

Và Q(x)=y

Thực hiện phép chia P(x) cho Q(x) đc.... rút ra a=?( nếu a phải chia hết cho y)


1 tháng 3 2020

Giải cả ra cho dễ hiểu!

15 tháng 10 2017

a)ta có:

\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)

tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)

từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

15 tháng 10 2017

Câu a :

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Vậy đa thức \(f\left(x\right)=x^2-2x+3\)