K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2022

Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)

\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)

\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)

Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)

\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)

\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)

24 tháng 3 2022

Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi  chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạundefined

15 tháng 7 2022

P(k)=1/k+1

=>P(2023)=1/2023+1=1/2024

 

NV
15 tháng 4 2022

\(\Leftrightarrow\left(2x-3y\right)^2+xy=\left(xy\right)^2\)

\(\Leftrightarrow\left(2x-3y\right)^2=xy\left(xy-1\right)\)

Do \(xy\left(xy-1\right)\) là 2 số nguyên liên tiếp nên tích của chúng là SCP khi và chỉ khi: \(\left[{}\begin{matrix}xy=0\\xy=1\end{matrix}\right.\) 

TH1: \(xy=0\Rightarrow4x^2+9y^2=0\Rightarrow x=y=0\)

TH2: \(xy=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\) thế vào pt đầu đều ko thỏa mãn

15 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

10 tháng 4 2022

lập phương hay chính phương thế bạn???

10 tháng 4 2022

nếu là chính phương thì ntn nha 

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

đặt \(t=n^2+3n\left(t\in Z^+\right)\)

phương trình thành:
\(t\left(t+2\right)=t^2+2t\)

vì \(t^2< t^2+2t< t^2+2t+1\)

hay \(t^2< t^2+2t< \left(t+1\right)^2\)

=> \(t^2+2t\) không thể là số chính phương

=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương

24 tháng 3 2022

Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2+x_3=9\\x_1x_2+x_2x_3+x_3x_1=a\\x_1x_2x_3=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\6+x_3\left(x_1+x_2\right)=a\\x_3=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\6+4\left(9-x_3\right)=a\\x_3=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-4\\6+4\left(9-4\right)=a\\x_3=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\24=a\\x_3=4\end{matrix}\right.\)

Vậy \(a=24\)

 

 

 

24 tháng 3 2022

 Em thấy đáp án của bài toán này là  a=26 ạ, thầy xem lại giúp em với ạ
Em cám ơn nhiều lắm ạ