Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=100\\a-b+c-d=-50\\8a+4b+2c+d=120\\27a+9b+3c+d=P\left(3\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\\\left(4\right)\end{matrix}\)
(1)+(2) \(\Leftrightarrow2\left(a+c\right)=50\Rightarrow c=25-a\)
(1)-(2) \(\Leftrightarrow2\left(b+d\right)=150\Rightarrow b=75-d\)
thế vào (3)<=> \(8a+4\left(75-d\right)+2\left(25-a\right)+d=120\)
\(\Leftrightarrow6a-3d=230\Rightarrow d=2a+\dfrac{230}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=25-a\\b=-2a-\dfrac{5}{3}\\d=2a+\dfrac{230}{3}\end{matrix}\right.\)
\(P\left(3\right)=27a-9\left(2a+\dfrac{5}{3}\right)+3\left(25-a\right)+2a+\dfrac{230}{3}\)
\(\left\{{}\begin{matrix}\forall a\in R;a\ne0\\P\left(3\right)=8a+\dfrac{410}{3}\end{matrix}\right.\)
Lời giải:
Ta có thể viết dạng của $f(x)$ như sau:
\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)
Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$
Giả sử \(g(x)=mx^3+nx^2+px\)
\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)
Giải hệ trên thu được \(m=0,n=0,p=10\)
Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)
Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)
\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)
Lời giải:
Ta có:
\(P\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}+\frac{c}{2}+d=\frac{1}{8}(a+2b+4c+8d)\)
\(\Rightarrow 8P\left(\frac{1}{2}\right)=a+2b+4c+8d(1)\)
\(P(-2)=-8a+4b-2c+d\)
\(\Rightarrow 8P(-2)=-64a+32b-16c+8d(2)\)
Từ \((1); (2)\Rightarrow 8P(\frac{1}{2})-8P(-2)=(a+2b+4c+8d)-(-64a+32b-16c+8d)\)
\(=65a-30b+20c\)
\(=5(13a-6b+4c)=0\)
Do đó: \(8P(\frac{1}{2})=8P(-2)\Leftrightarrow P(\frac{1}{2})=P(-2)\)
\(\Rightarrow P(\frac{1}{2})P(-2)=[P(-2)]^2\geq 0\)
Ta có đpcm.
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
chua hok toi lop 7
giải bằng máy tính dc ko bạn