Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đa thức $(x+1)(x^2+1)$ có bậc 3 nên đương nhiên dư sẽ có bậc nhỏ hơn $3$
Đặt $f(x)=(x+1)(x^2+1)Q(x)+ax^2+bx+c$ $(a,b,c\in\mathbb{R}$)
Trong đó: $Q(x)$ và $ax^2+bx+c$ lần lượt là đa thức dương và đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$
Theo bài ra ta có:
$f(-1)=a-b+c=4(1)$
$f(x)=(x+1)(x^2+1)Q(x)+a(x^2+1)+bx+c-a$ nên $f(x)$ chia $x^2+1$ dư $bx+c-a$
$\Rightarrow bx+c-a=2x+3$ với mọi $x$
\(\Rightarrow \left\{\begin{matrix} b=2\\ c-a=3\end{matrix}\right.(2)\)
Từ $(1);(2)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$
Vậy phần dư là $\frac{3}{2}x^2+2x+\frac{9}{2}$
theo định lí bơ- zu ta có: f(x) : x+1 dư 4 =>f(-1)=4
do bậc của đa thức chia (x+1)(x^2+1) là 3
nên bậc đa thức dư có dang ax^2 +bx+c
theo đinh nghĩa phep chia có dư ta có:
f(x)= (x+1)(x^2 +1)q(x) + ax^2 +bx+c
=(x+1)(x^2 +1)q(x) + ax^2 +a -a +bx+c
=(x+1)(x^2 +1)q(x) + a(x^2 +1) -a +bx+c
= [(x+1)q(x) + a](x^2 +1) +bx+c- a
mà f(x) : x^2+1 dư 2x+3 nên b=2 và c-a = 3(1)
f(-1)=4 =>a -b+ c=4(2)
từ (1)(2) ta có:
{b=2
{c- a =3
{a -b+ c =4
<=>{b=2
------{c -a =3
------{a+c =6
<=>{a= 3/2
------{b=2
------{c=9/2
vậy đa thức dư là :3/2x^2 +2x +9/2
Bạn tham khảo tại đây nhé: Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến.
Chúc bạn học tốt!
Làm
Ta có: f(x) chia cho x+1 dư 1 => f(-1)=4 (1) (Định lí Bơ-du)
Ta có : f(x)chia x2+1 dư 2x+3 => f(x)= (x2+1)g(x) + 2x+3 (2)
Khi chia f(x) cho đa thức (x+1)(x2+1) bậc 3 thì dư sẽ có dạng ax2+bx+c
=> f(x)= (x+1)(x2+1)k(x)+ax2+bx+c (4)
=> f(x)= (x+1)(x2+1)k(x) +a(x2+1)+bx+c-a
=>f(x) = (x2+1) [(x+1)(x2+1)k(x)+a] +bx+c-3 (3)
(2)(3)=> 2x+3= bx+c-a với mọi x
=> \(\left\{{}\begin{matrix}c-a=3\\b=2\end{matrix}\right.\)
(1)(4)=> a+c=6 mà c-a =3 \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\c=\frac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\frac{3}{2}x^2+2x+\frac{9}{2}\)
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
Áp dụng định lý Bezout ta được:
f(x)f(x)chia cho x+1 dư 2 ⇒f(−1)=2⇒f(−1)=4
Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+cf(x)=(x+1)(x2+1)q(x)+ax2+bx+c
=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c
=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a
=(x2+1)[(x+1)q(x)+a]+bx+c−a=(x2+1)[(x+1)q(x)+a]+bx+c−a
Vì f(−1)=4f(−1)=4nên a−b+c=4(1)a−b+c=4(1)
Vì f(x) chia cho x2+1x2+1dư 2x+3 nên
\hept{b=2c−a=3(2)\hept{b=2c−a=3(2)
Từ (1) và (2) ⇒\hept⎧⎨⎩a+c=6b=2c−a=3⇔\hept⎧⎪⎨⎪⎩a=32b=2c=92⇒\hept{a+c=6b=2c−a=3⇔\hept{a=32b=2c=92
Vậy dư f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là 32x2+2x+12