\(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

Ta có:

\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)

\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)

 

15 tháng 1 2022

\(f\left(x\right)=0\) có phải f(0) đâu bạn

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

29 tháng 2 2020

ĐỀ bài em sai nhé

Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0) 

7 tháng 5 2018

p(x)=ax3+bx2+cx+d

p(x)⋮5 ∀ x

=> p(5)⋮5=> (a53+b52+c5+d)⋮5

=> d⋮5

=> (ax3+bx2+cx)⋮5

=>p(1)=a13+b12+c1[p(1)⋮5]

=a+b+c

p(-1)=a(-1)3+b(-1)2+c(-1)[p(-1)⋮5]

=-a+b-c

=>p(1)+p(-1)=(a+b+c)+(-a+b-c)

=b⋮5

=> (ax3+cx)⋮5

ax3+cx

=x(ax2+c)⋮5

=> ax2+c⋮5

Với x=5=> a.52+c⋮5

=> c⋮5

=> ax2⋮5

=>a⋮5

Vậy a,b,c,d ⋮5

10 tháng 3 2018

Ta có: 

\(Q\left(1\right)=a+b+c+d\Rightarrow a+b+c⋮3\left(1\right)\)

\(Q\left(-1\right)=-a+b-c+d⋮3\left(2\right)\)

Cộng (1) với (2), ta có: \(2b+2d⋮3\)

Mà \(d⋮3\Rightarrow2d⋮3\)

\(\Rightarrow2b⋮3\Rightarrow b⋮3\)

\(Q\left(2\right)=8a+4b+2c+d⋮3\)

\(\Rightarrow8a+2c⋮3\)(vì \(4b+d⋮3\))

\(\Rightarrow6a+2a+2c⋮3\)

\(\Rightarrow6a+2\left(a+c\right)⋮3\)

Mà \(a+c⋮3\left(a+b+c⋮3,b⋮3\right)\)

\(\Rightarrow6a⋮3\)

\(\Rightarrow a⋮3\)

\(\Rightarrow c⋮3\)

\(d⋮3\left(gt\right)\)

12 tháng 3 2018

còn thiếu \(b⋮3\)