Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs
f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!
cái trên thì bn dùng BĐT Bunhiakovshi nha
cái dưới hơi rườm tí mik ko bt lm đúng ko
\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)
\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)
\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)
\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)
\(+\left(ax-a+b\right)]\)
\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)
\(-bx+ax-a+b)\)
\(=x\left(x+1\right)\left(4ax-a+3b\right)\)
Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
Đồng nhất hệ số là ra
Đầu tiên ta chứng minh: \(\left|a\right|\le1,\left|b\right|\le1,\left|c\right|\le1\)Lời giải em tham khảo tại đây http://olm.vn/hoi-dap/question/709608.html.
Phần chứng minh |a|< 1 phải chọn c khéo chút xíu.
Do \(\left|f\left(x\right)\right|\ge7\) nên \(\left|4a+2b+c\right|\ge7\).
Mà \(\left|4a+2b+c\right|\le\left|4a\right|+\left|2b\right|+\left|c\right|\le7.\)
Dấu bằng xảy ra khi a = b = c = 1.
Ta có: (a2+b2)(x2+y2)=(ax+by)2
\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2
\(\Leftrightarrow\)a2y2-2abxy+b2x2=0
\(\Leftrightarrow\)(ay-bx)2=0
\(\Leftrightarrow\)ay=bx
\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)
#)Giải :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Rightarrow a^2y^2+b^2x^2=2abxy\)
\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức)
\(\Rightarrowđpcm\)
Chi tham khao tai day:
Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(\left|f\left(0\right)\right|=\left|c\right|\le k.\)
\(\left|f\left(1\right)\right|=\left|a+b+c\right|\le k\Leftrightarrow-k\le a+b+c\le k.\)(1)
\(\left|f\left(-1\right)\right|=\left|a-b+c\right|=\left|-a+b-c\right|\le k\Leftrightarrow-k\le-a+b-c\le k\).(2)
Cộng lần lượt các vế của (1) và (2) ta có: \(-2k\le2b\le2k\Leftrightarrow-k\le b\le k\Leftrightarrow\left|b\right|\le k.\)
Mặt khác ta có: \(\hept{\begin{cases}-k\le a+b+c\le k\\-k\le a-b+c\le k\end{cases}\Rightarrow-2k\le2a+2c\le2k\Leftrightarrow-k\le a+c\le k.}\)
Chọn c = k thì \(-k\le a+k\Leftrightarrow-2k\le a.\)
Chọn c = k thì \(a-k\le k\Leftrightarrow a\le2k.\) Vậy \(\left|a\right|\le2k\).
Ta có: \(\left|a\right|+\left|b\right|+\left|c\right|\le2k+k+k=4k\left(đpcm\right).\)
Em cảm ơn cô nhiều ạ : ) Bùi Thị Vân