Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sắp xếp các hạng tử của Q(x) theo lũy thừa giảm dần của biến:
\(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b) Viết đa thức Q(x) đầy đủ từ lũy thừa bậc cao nhất đến lũy thừa bậc 0:
\(Q\left(x\right)=-5x^6+0x^5+2x^4+4x^3+0x^2-4x-1\)
a: \(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
b: \(Q\left(x\right)=-5x^6+2x^4+4x^3-4x-1\)
a) Q(x)=\(-5x^6\)\(+2x^4\)\(+4x^3\)\(-4x-1\)
b) Giống câu a mà bạn . Chúc bạn học giỏi
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)
\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)
\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)
A(x)=M(x)-N(x)=-2x2+x-3=0
đang suy nghĩ tí làm lại sau :v
Giải:
a) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
b) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
c) Các hệ số của Q(x) là: 9; 1; 3; 6; 8.
d) \(Q\left(x\right)=9x^3-x^3-x^2-x^2+3x-3x-6+8\)
\(\Leftrightarrow Q\left(x\right)=8x^3-2x^2+2\)
Suy ra:
\(Q\left(-4\right)=8\left(-4\right)^3-2\left(-4\right)^2+2\)
\(\Leftrightarrow Q\left(-4\right)=-512-32+2\)
\(\Leftrightarrow Q\left(-4\right)=-542\)
Ta có:
\(Q\left(3\right)=8.3^3-2.3^2+2\)
\(\Leftrightarrow Q\left(3\right)=216-18+2\)
\(\Leftrightarrow Q\left(3\right)=200\)
Vậy ...