Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)
=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]
=> E = (x2 + 5x - 6)(x2 + 5x + 6)
=> E = (x2 + 5x)2 - 62
=> E = (x2 + 5x)2 - 36
Mà : (x2 + 5x)2 \(\ge0\forall x\)
Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)
Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5
Ta có -|1,5 - x| < 0
=> 19,5 - |1,5 - x| < 19,5
Vậy GTLN của Q là 19,5 <=> 1,5 - x = 0 <=> x = 1,5
câu 2a) xét (x-1)2> hoặc = 0
(x-1)2+(y+1)2> hoặc bằng 0
(x-1)2+(y+1)2+3> hoặc =3
=> GTNN của biểu thức trên là 3
Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
ta có x4+3x2 \(\ge\)0
=>\(x^4+3x^2+3\ge3\)
vậy giá trị nhỏ nhất của biểu thức =3
\(P\left(x\right)=x^4+3x^2+3=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)
nhận thấy \(x^2+\frac{3}{4}\ge\frac{3}{4}\) suy ra \(\left(x^2+\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Suy ra \(P\left(x\right)\ge\frac{9}{4}+\frac{3}{4}=\frac{12}{4}=3\)
Vậy Min = 3 <=> x = 0