Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
Giao luu vấn đề mới
x=1, -2 là nghiệm
\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)
Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .
Ta có đồng thời:
\(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)
Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:
\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)
=> \(1-x_0=0\)
=> \(x_0=1\)
Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.
Để x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2
Giả sử \(x^4+1=\left(x^2+ax+b\right)\left(x^2+px+q\right)\)
\(=x^4+px^3+qx^2+ax^3+apx^2+aqx+bx^2+bpx+bq\)
\(=x^4+\left(p+a\right)x^3+\left(q+ap+b\right)x^2+\left(aq+bp\right)x+bq\)
Đồng nhất hệ số ta được : \(a+p=0;q+ap+b=0;aq+bp=0;bq=1\)
Xét \(b=1;q=1\)\(\Rightarrow a=-1;p=1\)
\(\Rightarrow x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow p=\pm1;q=1\)
Áp dụng định lý Bê-du, ta có :
Khi \(P\left(x\right)\)chia hết cho \(x-2\Rightarrow P\left(2\right)=0\)
\(\Rightarrow6.2^5+a.2^4+b.2^3+2^2+c.2+450=0\)
\(\Rightarrow192+16a+8b+4+2c+450=0\)
\(\Rightarrow16a+8b+2c=-646\)
\(\Rightarrow8a+4b+c=-323\)
Khi \(P\left(x\right)\)chia hết cho \(x-3\Rightarrow P\left(3\right)=0\)
\(\Rightarrow P\left(3\right)=6.3^5+a.3^4+b.3^3+3^2+3c+450=0\)
\(\Rightarrow1458+81a+27b+9+3c+450=0\)
\(\Rightarrow81a+27b+3c=-1917\)
\(\Rightarrow27a+9b+c=-639\)
Khi \(P\left(x\right)\)chia hết cho \(x-5\Rightarrow P\left(5\right)=0\)
Làm tương tự, có :
\(125a+25b+c=-3845\)
Bạn tự xét phần tiếp theo vì ở đây đã có 3 dữ kiện để tìm a, b , c rồi.
để f(x) và g(x) cùng chia hết cho -2x+6
=>\(\hept{\begin{cases}f\left(3\right)=0\\g\left(3\right)=0\end{cases}}\)<=>\(\hept{\begin{cases}\frac{3867}{20}-m+n=0\\\frac{1911}{11}+3m-n=0\end{cases}}\)<=>\(\hept{\begin{cases}-m+n=-\frac{3867}{20}\\3m-n=-\frac{1911}{11}\end{cases}< =>\hept{\begin{cases}m=-183,5386364\\n=-376,8886364\end{cases}}}\)