Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6
=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)
=(x-3)(2x3-x2-5x-2)
=(x-3)(2x3-4x2+3x2-6x+x-2)
=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]
=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)
b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)
=(x-3)(x-2)(x+1)[2(x-1)+3]
=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)
vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2
=>3(x-3)(x-2)(x+1) chia hết cho 6
lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6
Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z
1) bạn ktra lại đề
2) \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
3)
a) \(x^2+x-2=0\)
<=> \(\left(x-1\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
b) \(3x^2+5x-8=0\)
<=> \(\left(x-1\right)\left(3x+8\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Vậy...
Bài 1 :
a)Tìm giá trị nhỏ nhất của biểu thức
A = 2x2 - 4x + 8
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2+4\)
\(=\left(\sqrt{2}x+\sqrt{2}\right)^2+4\)
Ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\) \(\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+4\ge4>0\)
=> A > 4
=> Amin = 4 \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2}=0\)
\(\Leftrightarrow x=-1\)
Bài 1:
a) \(A=2x^2-4x+8\)
\(=2\left(x^2-2x+4\right)=2\left(x-2\right)^2\)
Xét \(2\left(x-2\right)^2\ge0\)
\(\Rightarrow Min_A=0\Leftrightarrow x=2\)
b) \(B=n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left[\left(n^2-4\right)\left(n^2-1\right)\right]\)
\(=n\left[\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Xét \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là 5 số nguyên liên tiếp
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮30\)
Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)
để đa thức 2x2 + 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0
=>6-7a+2a2=0
<=>2a2-4a-3a+6=0
<=>2a(a-2)-3(a-2)=0
<=>(a-2)(2a-3)=0
=> a=2 hoặc a=3/2
Vậy vớia=2 hoặc a=3/2 thì đa thức 2x2 + 7x + 6 chia hết cho x+a
bài 1
n lẻ nên đặt n=2k+1 (k thuộc Z)
Ta có n3-3n2-n+3=n2(n-3)-(n-3)
=(n-3)(n-1)(n+1)
=(2k+1-3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)
=8.(k-1).k.(k+1)
Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6
Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48