K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Lộn, phải là bé hơn hoặc bằng 0

18 tháng 4 2019

25a+b+2c =0 à đúng ko vậy 

14 tháng 1 2021

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=9a-3b+c\\f\left(4\right)=16a+4a+c\end{cases}}\) \(\Rightarrow f\left(-3\right)+f\left(4\right)=25a+b+2c=0\)

\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)

Khi đó: \(f\left(-3\right)\cdot f\left(4\right)=-f\left(4\right)\cdot f\left(4\right)=-\left[f\left(4\right)\right]^2< 0\)

Đề bài bị sai rồi phần đpcm phải là "\(\le\)" chứ không phải "\(< \)

Ta có : \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c\\f\left(4\right)=a.4^2+b.4+c=16a+4b+c\end{cases}}\)

\(\Rightarrow f\left(4\right)+f\left(-3\right)=\left(16a+4b+c\right)+\left(9a-3b+c\right)=25a+b+2c=0\)

\(\Rightarrow f\left(-3\right)+f\left(4\right)=0\)

\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)

\(\Rightarrow f\left(-3\right).f\left(4\right)=-f\left(4\right).f\left(4\right)=-[f\left(4\right)]^2\le0\)\(\forall x\)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

1 tháng 4 2019

Bài làm

a) Giả sử P(x) có một nghiệm là 1 thì:

p(1)=a*1^2+b*1+c

      =a+b+c

Mà a+b+c=0

=>p(1)=0

=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)

b)Giả sử P(x) có 1 nghiệm là -1 thì

p(-1)=a*(-1)^2+b*(-1)+c

       =a-b+c

Mà a-b+c=0

=>p(-1)=0

=> đa thức p(x) có một nghiệm là -1(ĐPCM)

c)TA có:

p(1)=a*1^2+b*1+c=a+b+c

p(-1)=a.(-1)^2+b*(-1)+c=a-b+c

Mà p(1)=p(-1)

=>a+b+c=a-b+c

=>a+b+c-a+b-c=0

=>2b=0  =>b=0

+) Với b=0 =>p(x)=ax^2+c (1)

                   =>p(-x)=a*(-x)^2+c=a*x+c  (2)

Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)