Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Có: \(0,\left(37\right)=0,373737373737...\)
\(0,\left(62\right)=0,626262626262...\)
\(\Leftrightarrow0,\left(37\right)+0,\left(62\right)=0,99999999999...\)
Mà \(0,9999999999999...\simeq1\)
Hay \(0,\left(9\right)=1\)
Vậy \(0,\left(37\right)+0,\left(62\right)=1\).
b) \(0,\left(33\right).3=0,99999...=0,\left(9\right)=1\)
Vậy \(0,\left(33\right).3=1\).
Chúc bạn học tốt!!!
\(a)0,\left(37\right)=0,37373737....\)
\(0,\left(62\right)=0,62626262....\)\(\Leftrightarrow0,\left(37\right)+0,\left(62\right)=0,99999999....\)
Mà \(0,99999999....\simeq1\)
hoặc \(0,\left(9\right)\simeq1\)
\(\Rightarrow0,\left(37\right)+\left(0,62\right)=1\)
\(b)0,\left(33\right).3=1\)
\(\Leftrightarrow0,99999999....=0,\left(9\right)\simeq1\)
\(\Rightarrow0,\left(33\right).3=1\)
Chúc bạn học tốt!
\(P=\dfrac{14^5.9^4-6^9.49^2}{2^{10}.49^3.3^8+6^8.7^5.13}\)
\(=\dfrac{2^5.7^5.3^8-2^9.3^9.7^4}{2^{10}.7^6.3^8+2^8.3^8.7^5.13}\)
\(=\dfrac{2^5.7^4.3^8\left(7-2^4.3\right)}{2^8.3^8.7^5\left(2^2.7+13\right)}\)
\(=\dfrac{-41}{2^3.7.41}\)
\(=\dfrac{-1}{56}\)
Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)
Ta có: góc zCB=góc CBy = 30 độ (so le trong)
Mà góc zCB + góc zCA=120 độ
=> góc zCA=90 độ.
=> Cz//Ax (cùng vuông góc AC)
Mà Cz//By => Ax//By
\(P=\dfrac{2^5\cdot7^5\cdot3^8-2^9\cdot3^9\cdot7^4}{2^{10}\cdot7^6\cdot3^8+2^8\cdot3^8\cdot7^5\cdot13}\)
\(=\dfrac{2^5\cdot7^4\cdot3^8\left(7-2^4\cdot3\right)}{2^8\cdot3^8\cdot7^5\cdot\left(2^2\cdot7+13\right)}\)
\(=\dfrac{1}{8}\cdot\dfrac{1}{7}\cdot\dfrac{7-16\cdot3}{4\cdot7+13}=\dfrac{1}{56}\cdot\left(-1\right)=-\dfrac{1}{56}\)
Ta có hình vẽ:
x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{x'Oy'}\) kề bù nên:
\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{xOy}+180^0=297^o\)
\(\Rightarrow\widehat{xOy}=117^o\)
\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)
\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)
\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên
\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)
Vậy...
\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)
mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé
x - y = 2
<=> y = x - 2
\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)
có \(\left(x-1\right)^2\ge0\forall\)
=> (x-1)2 + 3 \(\ge3\)
=> (x-1)2 + 3 min = 3
=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)
bài kia cũng thế, thay y = x-2 vào rồi tính ra ???
Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :
x\(^2\)- 2x+4
=> ( x - 1)\(^2\)+3
Mình ko hiểu lắm.