Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
=> f(1) = f(-1) => a + b + c = a - b + c
=> a + b = a - b => a + b - a + b = 0
=> 2b = 0 => b = 0
Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c
f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c
=> f(-x) = f(x)
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0
=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x
vì f(1)=f(-1)
suy ra a-b+c=a+b+c
=> a-b=a+b
=> 2b=0
=>b=0
thay vào f(x) và f(-x) suy ra điều phải cm
Với x=1 => f(x)=f(1)= a.1^2+b.1+c=a+b+c(1)
x=-1 => f(x)=f(-1)= a.(-1)^2+b.(-1)+c=a-b+c(2)
Từ (1) và (2) => b=-b
=> b.x=(-b).(-x)
=> f(x)=f(-x)=> đpcm
tìm x từ 2x-4 rồi thay vào x^2-ax+2
đặt x^2 -ax+2 bằng 0 sau đó tìm dc a
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
k ai làm dc t làm dc;
x=1 => a+b+c = 4
x=-1=>a-b+c = 8
a-c = -4
a=1
b = -2
c = 5
f(x) = x2- 2x +5
\(f\left(1\right)=f\left(-1\right)\)
\(\Leftrightarrow a+b+c=a-b+c\)
=>b=-b
hay b=0
=>f(x)=ax2+c
\(f\left(-x\right)=a\cdot\left(-x\right)^2+c=ax^2+c=f\left(x\right)\)