Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+6b+19c=0
CMR: phương trình ax^2 + bx +c = 0 có nhiệm trong đoạn [0;1/3]
--------
ta có:
f(0) = c
f(1/3) = a/9 + b/3 + c
=> f(0) + 18.f(1/3) = c + 2a + 6b + 18c = 2a + 6b + 19c = 0 (*)
Nếu f(0) = 0 hoặc f(1/3) = 0 => f(x) = 0 có nghiệm là 0 hoặc 1/3 thuộc [0,1/3]
nếu f(0) ≠ 0 và f(1/3) ≠ 0 tự (*) => f(0).f(1/3) ≤ 0 => f(x) = 0 có nghiệm thuộc [0,1/3]
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+3b+6c=0
a) Tính a,b,c theo f(0), f(1), f(1/2)
f(0) = c
f(1) = a + b + c
f(1/2) = a/4 + b/2 + c
b) CMR ba số f(0), f(1), f(1/2) không thể cùng dấu:
f(0) + f(1) + 4f(1/2) = c + a+b+c + a + 2b + 4c = 2a + 3b + 6c = 0
=> f(0) , f(1) , f(1/2) không thể cùng dấu.
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+6b+19c=0
CMR: phương trình ax^2 + bx +c = 0 có nhiệm trong đoạn [0;1/3]
--------
ta có:
f(0) = c
f(1/3) = a/9 + b/3 + c
=> f(0) + 18.f(1/3) = c + 2a + 6b + 18c = 2a + 6b + 19c = 0 (*)
Nếu f(0) = 0 hoặc f(1/3) = 0 => f(x) = 0 có nghiệm là 0 hoặc 1/3 thuộc [0,1/3]
nếu f(0) ≠ 0 và f(1/3) ≠ 0 tự (*) => f(0).f(1/3) ≤ 0 => f(x) = 0 có nghiệm thuộc [0,1/3]
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+3b+6c=0
a) Tính a,b,c theo f(0), f(1), f(1/2)
f(0) = c
f(1) = a + b + c
f(1/2) = a/4 + b/2 + c
b) CMR ba số f(0), f(1), f(1/2) không thể cùng dấu:
f(0) + f(1) + 4f(1/2) = c + a+b+c + a + 2b + 4c = 2a + 3b + 6c = 0
=> f(0) , f(1) , f(1/2) không thể cùng dấu.
:3
Ta có:
f(1)=a+b+c
f(-1)=a-b+c
f(2)=4a+2b+c
=> f(1)+f(2)+f(-1)=6a+2b+3c=0
=> 3 số f91), f(-1), f(2) không thể cùng âm hoặc cuàng dươg
\(f\left(1\right)=a+b+c;f\left(5\right)=25a+5b+c\)
\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5a+c=26a+6a+2c=2\left(13a+3a+c\right)>0\)
bạn hay tinh f(-2) và f(-3)
rồi nhân vào chia nhóm ra lam sao xuat hien 13a + b +2c
rồi thay no bằng 0 vào mà giải
Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0