Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm no của đa thức f(x)=x3+ax2+bx+c. Biết rằng đa thức có no và a+2b+4c=−12
no là nghiệm đấy
nghiệm là j =))
Thay x=-1 vào đa thức f(x) có:
\(f\left(-1\right)=-1+a-b-2=0\Leftrightarrow a-b=3\)\(\Leftrightarrow a=3+b\)(1)
Thay x=1 vào đa thức f(x) có:
\(f\left(-1\right)=1+a+b-2=0\Leftrightarrow a+b=1\)(2)
Thay (1) vào (2) ta có:
\(3+b+b=1\)
\(\Leftrightarrow2b=-2\)
\(\Leftrightarrow b=-1\)
\(\Leftrightarrow a=2\)
KL:................
P(x) = ax^2 + 5x - 3
Đa thức này có một nghiệm là 1/2 tức là P(1/2) = 0
=> a/4 + 5/2 - 3 = 0
=> a = 2
Đáp số: a = 2
với P(x) có nghiệm là 5
<=>P(5)=a*52+5*5-3
<=>a*25+25-3=5
<=>a*25=-17
<=>a=-17/25
với P(x) có nghiệm là 1/2
<=>P(1/2)=a*1/2^2+5*1/2-3
<=>a*1/4*5/2-3=1/2
<=>...
\(f\left(-1\right)=-1+a-b-2=0\left(1\right)\)
\(f\left(1\right)=1+a+b-2=0\left(2\right)\)
Lấy (1) cộng (2) ta đc :
\(2a-4=0\)
\(a=2\)
Thay a=2 vào (1) ta đc : b=-1
Vậy ...
f(1)=\(1^3+a.1^2+b.1-2=0\Rightarrow a+b=1\)1
f(-1)=\(\left(-1\right)^3+a.\left(-1\right)^2-b-2=0\) \(\Rightarrow a-b=3\)
\(\Rightarrow a+b+a-b=4\)\(\Rightarrow a=2\Rightarrow b=1\)