K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

24 tháng 5 2020

Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm

NV
16 tháng 4 2021

Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)

\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên

\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)

Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ

\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn

Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:

\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)

\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)

Nhân vế với vế:

\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn

Mà vế trái lẻ \(\Rightarrow\) vô lý

Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên

NV
12 tháng 3 2021

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

9 tháng 11 2021

\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

f(-7)=7

=>a*(-7)^2021+b*(-7)^2019+c*(-7)-5=7

=>a*7^2021+b*7^2019+c*7+5=-7

=>f(7)+10=-7

=>f(7)=-17