K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NN
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 5 2020
Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= 0
=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]
= 0 * [G(x) + f(x) ]
= 0
NT
0
NT
1
1 tháng 5 2019
Theo đề bài f(0)= 2017 => c= 2017
f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)
f(-1)= 2019 => a - b + c= 2019 => a - b= 2 (2)
Cộng theo vế của (1) và (2), ta được
2a = 3 => a = 3/2
=>b= -1/2
Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021
Vậy f(2)= 2021
IC
0