Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2f(x)-x.f(1/x)=x^2
Với x=2 => 2f(2)-2.f(1/2)=4 (1)
Với x=1/2 => 2 . f(1/2)- 1/2 f(2) = (1/2)^2
=> 2 .f(1/2) -1/2f(2)=1/4(2)
lấy (2)+(1) ta được 3/2 f(2)=17/4 => f(2)=17/6
Tính f(1/3) làm tương tự thay x=3 và 1/3
T ic k nha
Ta có
Thay x = 1/2 : \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Thay x = 2: \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
\(\Rightarrow\left[f\left(2\right)+3f\left(\frac{1}{2}\right)\right]-3\left[f\left(\frac{1}{2}\right)+3f\left(2\right)\right]=4-\frac{3}{4}\)
\(\Rightarrow-5f\left(2\right)=\frac{13}{4}\Leftrightarrow f\left(2\right)=-\frac{13}{20}\)
Ta có :
Thay x = 1/2 : ƒ (12 )+3ƒ (2)=14
Thay x = 2: ƒ (2)+3ƒ (12 )=4
⇒[ƒ (2)+3ƒ (12 )]−3[ƒ (12 )+3ƒ (2)]=4−34
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
a: \(h\left(x\right)=f\left(x\right)+g\left(x\right)=x^3-x^2+x-24\)
Bậc là 3
b: \(k\left(x\right)=f\left(x\right)-g\left(x\right)=7x^3-9x^2+11x+6\)
\(g\left(\dfrac{3}{2}\right)=-3\cdot\dfrac{27}{8}+4\cdot\dfrac{9}{4}-5\cdot\dfrac{3}{2}-15=-\dfrac{189}{8}\)
\(k\left(\dfrac{3}{2}\right)=7\cdot\dfrac{27}{8}-9\cdot\dfrac{9}{4}+11\cdot\dfrac{3}{2}+6=\dfrac{207}{8}\)
\(\left\{\begin{matrix}f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\left(1\right)\\g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)
Sắp xếp số mũ của (ẩn theo một trình tự, Thường, nên giảm dần"
Tính f(x)+g(x) lấy (1) cộng (2)
\(f\left(x\right)+g\left(x\right)=\left(1-1\right)x^5+\left(7+5\right)x^4+\left(-9-2\right)x^3+\left(-2+4\right)x^2+\left(-\dfrac{1}{4}\right)x+\left(-\dfrac{1}{4}\right)\)
\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
Tính f(x)-g(x) lấy (1) trừ (2)
\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)
Ta có : f(2) = f(2) + 3f(1/2) = 22 = 4. (1)
f(1/2) = f(1/2) + 3f( 1 / 1/2) =(1/2)2
= f(1/2) + 3f(2) =1/4 . (2)
= 3f(2) + f(1/2) = 1/4
= 9f(2) . 3f(1/2) = 1/4 . (2)
Lấy (2) trừ đi (1) ta có :
8f(2) = 3/4 -4 = -13/4
=> f(2) = -13/4 : 8 =-13/4 . 1/8 = -13/32
Vậy f(2) = -13/32