Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a = c + 3
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(-2\right)=4a+2b+c=0\)
\(\Rightarrow f\left(2\right)=4a-2b+c=0\)
\(\Rightarrow\left\{{}\begin{matrix}8a+2c=0\\4b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4a+c=0\\b=0\end{matrix}\right.\)
Thay a = c + 3 vào 4a + c = 0 ta có:
\(4c+12+c=0\)
\(\Rightarrow c=-2,4\)
\(\Rightarrow a=0,6\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(0,6;0;-2,4\right)\)
Mình giải giúp bạn nha
Giải :
Ta có : \(\int\left(x\right)=ãx^2+bx+c\)
\(\Rightarrow\int\left(-2\right)=4a-2b+c\) = 2a - 2b +2a + c = 2a -2b +3c +6 = 0
\(\Rightarrow2a-2b+3c=-6\) (1)
\(\int\left(2\right)=4a+2b+c\) = 2a + 2b + 2a + c = 2a + 2b +3c +6 =0
\(\Rightarrow2a+2b+3c=-6\) (2)
Từ (1) và (2) \(\Rightarrow2a-2b+3c=2a+2b+3c\)
\(\Rightarrow2a-2b+3c-\left(2a+2b+3c\right)=0\)
\(\Rightarrow-4b=0\)
\(\Rightarrow b=0\)
\(\Rightarrow2a+3c=-6\)
\(\Rightarrow5c+6=-6\)
\(\Rightarrow5c=-12\)
\(\Rightarrow c=\dfrac{-12}{5}\)
\(\Rightarrow a=\dfrac{-12}{5}+3\)
\(\Rightarrow a=\dfrac{3}{5}\)
Vậy \(b=0;c=\dfrac{-12}{5};a=\dfrac{3}{5}\)
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
Ta có:
\(f\left(0\right)=a.0^2+b.0+c=0\)
\(=0+0+c=0\Rightarrow c=0\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=0\)
\(a-b+0=0\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a=b\)
\(f\left(1\right)=a.1^2+b.1+c=0\)
\(\Rightarrow a+b+0=0\)
\(\Rightarrow a+b=0\)
Mà \(a=b\)
\(\Rightarrow a=b=\frac{0}{2}=0\)
Vậy \(a=b=c=0\)
f(0) = a.02 + b. 0 + c = 2016
<=> c =2016
f (1) = a.12 + b.1 + c =2017
<=> a + b =1 (1)
f ( -1 ) = a (-1)2 + b . (-1) +c =2018
<=> a -b =2 (2)
Từ (1),(2) <=> a = 1,5 ; b = -0,5
=> F(x) = 1,5x2 -0,5 x + 2016
F (2) = 1,5 . 22 -0,5 .2 +2016
= 6 -1 +2016 =2021
Ta có:
\(F\left(0\right)=a.0^2+b.0+c=2016\)
\(\Rightarrow c=2016\)
\(F\left(1\right)=a.1^2+b.1+c=2017\)
\(\Rightarrow a+b=1\)
\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)
\(\Rightarrow a-b=2\)
Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)
Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)
Theo de ta co:
1) a.x2+b.x+c = -2 . Thay x=0 vao bieu thuc nay duoc:
a.02 + b.0 + c = -2
=> 0+0+c = -2
=> c=-2
2) a.x2 + b.x+c = 1 . Thay x=1 vao bieu thuc nay duoc:
a.12 + b.1 + c = 1
=> a+ b + c = 1
Thay c=-2 vua tim o (1) vaobieu thuc tren duoc:
a+b-2 =1 => a+b =3
2) a.x2 +b.x +c = 4 . Thay x=-2 vao bieu thuc nay, ta duoc:
a.(-2)2 + b.(-2) + c = 4
=> 4a - 2b + c = 4
=> 2 ( 2a - b ) +c = 4
Thay: c = -2 tim o (1) vao bieu thuc tren duoc:
2(2a-b) -2 = 4
=> 2a- b = (4+2):2 = 3
Bay gio ta da co 2 yeu to:
a+b = 3 ; 2a-b = 3
Tu a+b = 3 => b = 3-a . Thay b=3-a vao bieeu thuc 2a-b = 3 ta duoc:
2a - (3-a) = 3 => 2a - 3 + a = 3 => 3a = 3+3 =6 => a = 6:3 = 2
Suuy ra: b = 3-2 = 1
Vay: a=2 ; b=1 ; c = -2
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c=0\)
\(f\left(-2\right)=4a-2b+c=0\)
=> 4a + 2b + c = 4a - 2b + c
=> 2b = -2b
=> 4b = 0
=> b = 0
Từ đề bài , ta có : a = c + 3
Theo f(2) , ta có :
\(f\left(2\right)=4a+0+a+3=0\)
\(f\left(2\right)=5a+3=0\)
\(\Rightarrow a=-\frac{3}{5}\)
Làm tương tự với f(-2) , a cũng giống kết quả
\(\Rightarrow c=a-3=\frac{-3}{5}-3=-\frac{18}{5}\)
Vậy a,b,c lần lượt là ....