Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức: \(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\). CMR f(x) chỉ có 1 nghiệm x=0
Giúp hộ!
\(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\)
\(\Leftrightarrow f\left(x\right)=\left(4x^3-3x^3\right)+\left(4x^4-3x^4\right)+\left(-x^2+3x^2\right)\)
\(\Leftrightarrow f\left(x\right)=x^3+x^4+2x^2\)
\(f\left(x\right)=0\)
\(\Leftrightarrow x^3+x^4+2x^2=0\)
\(\Leftrightarrow x^2\left(x+x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\end{matrix}\right.\)
Vậy f(x) chỉ có 1 nghiệm
bài 3:
a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5
= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5
= 7x4+2x3+2x2-x+5
g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3
=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5
= 7x4+x3+x2+x+5
b) h(x)=f(x)-g(x)
=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)
=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5
=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)
=x3+x2-2x
Bài 4:
a) f(x)=5x4+x3-x+11+x4-5x3
=(5x4+x4)+(x3-5x3)-x+11
=6x4-4x3-x+11
g(x)=2x3+3x4+9-4x3+2x4-x
=(3x4+2x4)+(2x3-4x3)-x+9
=5x4-2x3-x+9
b) h(x)=f(x)-g(x)
=(6x4-4x3-x+11)-(5x4-2x3-x+9)
=6x4-4x3-x+11-5x4-2x3-x+9
=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)
= x4-6x3-2x+20
c) Với x = -2
Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0
Vậy x = -2 không phải là nghiệm của đa thức h(x)
đúng thì tặng 1 tick cho mk nk các pn!!!
f(x)=5x3+2x4-x2+3x2-x3-x4+1-4x3
=(5x3-x3-4x3)+(2x4-x4)+(3x2-x2)+1
=0+x4+2x2+1>(=)0+0+0+1=1
=>đa thức f(x) không có nghiệm
=>đpcm
Đây là suy nghĩ của mk thôi, mình cx ko chắc lắm đâu:
Ta có:
F(x)=4x3 + 3x4 \(-\)1 - x2+4x2 -x3-2x4 +3-3x3
=(3x4-2x4) +(4x3-x3-3x3)+(-x2+4x2)+( -1+3)
= x4 + 3x2 +2
Lại có:
x4\(\ge\)0
=> -x4\(\ge\)0
3x2\(\ge\)0
=> 3(-x)2\(\ge\)0
2>0
=> x4+3x2+2>0
Vậy đa thức F(x) luôn nhận giá trị lớn hơn 0 vs mọi x hay đa thức F(x) không có nghiệm trong R
F (x) = 4x3 + 3x4 - 1 - x2 + 4x2 - x3 - 2x4 + 3 - 3x3
F (x) = (3x4 - 2x4) + (4x3 - x3 - 3x3) + (-x2 + 4x2) + (-1+3)
F (x) = x4 + 3x2 + 2
Ta có: x4 \(\ge\) 0 với mọi x
Ta có: 3x2 \(\ge\) 0 với mọi x
=> x4 + 3x2 \(\ge\) 0 với mọi x
Mà x4 + 3x2 + 2 > 0
Vậy F (x) vô nghiệm
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
1.
a, (x-5)2
Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x
Nên: (x-5)2 \(\ge\) 0 với mọi x
Suy ra: đa thức này không có nghiệm.
\(f\left(x\right)=5x^3+x^4-x^2+2x^2-x^3-x^4-2x+5-4x^3\) \(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(x^4-x^4\right)+\left(-x^2+2x^2\right)-2x+5\)
\(f\left(x\right)=x^2-2x+5\) = 0
\(f\left(x\right)=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\) = 0
\(f\left(x\right)=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\) = 0
Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x thuộc R
=> \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Suy ra f(x) vô nghiệm!!!
Mình làm thế thôi chứ không chắc!
Cảm ơn