Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)
\(\Rightarrow\left(\frac{x-4019}{2008}-1\right)+\left(\frac{x-4018}{2009}-1\right)+\left(\frac{x-4017}{2010}-1\right)=0\)
\(\Rightarrow\frac{x-6027}{2008}+\frac{x-6027}{2009}+\frac{x-6027}{2010}=0\)
\(\Rightarrow\left(x-6027\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}\ne0\)
\(\Rightarrow x-6027=0\)
\(\Rightarrow x=6027\)
Vậy x = 6027
\(BPT\Leftrightarrow1+\frac{1}{x+2}<1-\frac{1}{x+5}\)
=> \(\frac{1}{x+2}<-\frac{1}{x+5}\)
\(\Rightarrow\frac{1}{x+2}+\frac{1}{x+5}<0\)
\(\Rightarrow\frac{x+5+x+2}{\left(x+5\right)\left(x+2\right)}<0\)
=> \(\frac{2x+7}{x^2+7x+10}<0\)
https://coccoc.com/search/math#query=(a2+%2B+4a+%2B3)(y2+%2B+12+%2B+15)+%2B+15
đáng lẽ câu hỏi phải là viết nhân tử thành đa thức chứ
\(=a^2y^2+4ay^2+12a^3+83a^2+3y+176a+105\)
Bài toán :
Kết quả 1: Rút gọn biểu thức
Kết quả 2: Phân tích thành nhân tử
https://coccoc.com/search/math#query=(a2+%2B+4a+%2B3)(y2+%2B+12+%2B+15)+%2B+15