K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

ai giúp mình đi

P(1)=a+b+c=0

=>x=1 là nghiệm của P(x)

2 tháng 7 2024

Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a

28 tháng 6 2016

 \(a+c=b\Rightarrow a-b+c=0\)

Ta thấy \(f\left(-1\right)=a-b+c=0\)Vậy x = -1 là 1 nghiệm của f(x)

Với \(a\ne0\)thì f(x) là 1 đa thức bậc hai và có nhiều nhất là 2 nghiệm, 1 nghiệm = 1 theo đề bài thì nghiệm còn lại như chứng minh trên là: -1.

19 tháng 4 2018

Ta có :

f(1) = a . (-1)2 + b . ( -1 ) + c = a - b + c = 0

Vậy đa thức trên có nghiệm là -1

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

17 tháng 3 2020

Giả sử P( x ) có ít nhất 3 nghiệm phân biệt : x1 ; x2 ; x3

 \( \implies\) P( x1 ) = 0 \(\iff\) ax12 + bx1 + c = 0 ( 1 )

          P( x2 ) = 0 \(\iff\) ax2+ bx2 + c = 0 ( 2 )

          P( x3 ) = 0 \(\iff\) ax3+ bx3 + c = 0 ( 3 )

+)Lấy ( 1 ) - ( 2 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax2+ bx2 + c ) = 0

                                                \( \implies\)  ax12 + bx- ax2- bx2  = 0

                                                \( \implies\) ( ax12 - ax22 ) + ( bx1 - bx2 ) = 0

                                                \( \implies\) a( x12 - x22 ) + b( x1 - x2 ) = 0

                                                \( \implies\) a( x1 - x2 )( x1 + x2 ) + b(x1 - x2 ) = 0

                                                \( \implies\) ( x1 - x2 ) [ a( x1 + x2 ) + b ] = 0

 Mà x1 - x2 khác 0   \( \implies\)   a( x1 + x2 ) + b = 0 ( 4 )

+)Lấy ( 1 ) - ( 3 )  vế với vế ta được : ( ax12 + bx1 + c ) - ( ax3+ bx3 + c ) = 0   

                                                \( \implies\) ax12 + bx- ax3- bx3  = 0

                                                \( \implies\) ( ax12 - ax32 ) + ( bx1 - bx3 ) = 0

                                                \( \implies\) a( x12 - x32 ) + b( x1 - x3 ) = 0

                                                \( \implies\) a( x1 - x3 )( x1 + x3 ) + b(x1 - x3 ) = 0

                                                \( \implies\) ( x1 - x3 ) [ a( x1 + x3 ) + b ] = 0

 Mà x1 - x3 khác 0   \( \implies\)   a( x1 + x3 ) + b = 0 ( 5 )            

+)Lấy ( 4 ) - ( 5 )  vế với vế ta được : [ a( x1 + x2 ) + b ] - [ a( x1 + x3 ) + b ] = 0 

                                                \( \implies\) a( x1 + x2 ) + b a( x1 + x3 ) - b  = 0

                                                \( \implies\) a( x1 + x2 ) a( x1 + x3 ) = 0

                                                \( \implies\) a( x1 + x2 -  x1 - x) = 0 

                                                \( \implies\) a ( x2 - x3 ) = 0

  Mà x2 - x3 khác 0   \( \implies\)   = 0 ( vô lý )

  Vậy P( x ) luôn không có quá 2 nghiệm phân biệt                      

25 tháng 3 2022

undefined