K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

a) Ta có:

B = (A + B) – A

= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)

= x3 + 3x + 1 – x4 - x3 + 2x + 2

= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)

= – x4 + 5x + 3.

b) C = A - (A – C) 

= x4 + x3 – 2x – 2 –  x5 

= – x5 + x4 + x3 – 2x – 2.

c) D = (2x2 – 3) . A

= (2x2 – 3) . (x4 + x3 – 2x – 2)

= 2x2 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)

= 2x2 . x4 + 2x2 . x3 + 2x2 . (-2x) + 2x2 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)

= 2x6 + 2x5 – 4x3 – 4x2 – 3x4 – 3x3 + 6x + 6

= 2x6 + 2x5 – 3x4 + (-4x3 – 3x3) – 4x2+ 6x + 6

= 2x6 + 2x5 – 3x4 – 7x3 – 4x2+ 6x + 6.

d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)

Vậy P = x3 - 2

e) Q = A : (x2 + 1)

Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn

Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)

Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn

14 tháng 4 2017

a) \(A\left(x\right)+B\left(x\right)=4x^5-2x^2-1\)

\(\Rightarrow2x^4-3x^3-4x+\dfrac{1}{2}+B\left(x\right)=4x^5-2x^2-1\)

\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-2x^4+3x^3+4x-\dfrac{1}{2}\)

\(\Rightarrow B\left(x\right)=4x^5-2x^4+3x^3-2x^2+4x-\dfrac{3}{2}\)

b) \(A\left(x\right)-C\left(x\right)=2x^3\)

\(\Rightarrow2x^4-3x^3-4x+\dfrac{1}{2}-C\left(x\right)=2x^3\)

\(\Rightarrow C\left(x\right)=2x^4-3x^3-4x+\dfrac{1}{2}-2x^3\)

\(\Rightarrow C\left(x\right)=2x^4-3x^3-2x^3-4x+\dfrac{1}{2}\)

\(\Rightarrow C\left(x\right)=2x^4-5x^3-4x+\dfrac{1}{2}\)

14 tháng 4 2017

a) B(x) = 4x5 -2x2 -1 - A(x) = 4x5 -2x2 -1 -2x4 +3x3+4x -1/2

B(x) = 4x5 -2x4 +3x3-2x2 +4x - 1/2

b) tt

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

27 tháng 4 2019

a) Ta có : \(C\left(x\right)+B\left(x\right)=A\left(x\right)\)

\(\Leftrightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)

                   \(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-x-8\right)\)

                   \(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+x+8\)

                   \(=-9x^2+12x+2\)

b) Ta có :                  \(C\left(x\right)=2x+2\)

\(\Leftrightarrow-9x^2+12x+2=2x+2\)

\(\Leftrightarrow\)        \(-9x^2+10x=0\)

\(\Leftrightarrow\)    \(x\left(-9x+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{10}{9}\end{cases}}\)

c) Giả sử :                 \(C\left(x\right)=2012\)

\(\Leftrightarrow\)\(-9x^2+12x+2=2012\)

\(\Leftrightarrow-9x^2+12x-2010=0\)

\(\Leftrightarrow\)\(9x^2-12x+2010=0\)

\(\Leftrightarrow\left(9x^2-2.3x.2+4\right)+2006=0\)

\(\Leftrightarrow\left(3x-2\right)^2+2006=0\)(vô nghiệm vì \(\left(3x-2\right)^2\ge0\forall x\inℝ\))

Do đó với x nguyên thì C(x) không thể nhận giá trị bằng 2012.

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

Theo bài ra ta có : 

\(A\left(x\right)+B\left(x\right)=6x^5-x^2+1\)

\(2x^4-3x^3+3-5x+B\left(x\right)=6x^5-x^2+1\)

\(B\left(x\right)=6x^5-x^2+1-2x^4+3x^3-3+5x\)

\(B\left(x\right)=6x^5-x^2-2-2x^4+3x^3+5x\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn: P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2 a) Xác định đa thức P(x) và Q(x) b) Tìm nghiệm của đa thức P(x) và Q(x) c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2 Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
11 tháng 5 2019

Ta có: P(x)+ Q(x)= x^3+ x^2-4x+2(1)

P(x)- Q(x)= x^3-x^2+2x-2(2)

Lấy (1)-(2)

=> P(x)+ Q(x)- P(x)+ Q(x)

= 2Q(x)

=>2Q(x)=(x^3+x^2-4x+2)- (x^3-x^2+2x-2)

=>2Q(x)= 2x^2-6x-2

=> Q(x)= x^2-3x-1

Vậy P(x)=....

15 tháng 6 2020

a) D(x) = 2x2 + 3x - 35

D(-5) = 2 . ( -5 )2 + 3 . ( -5 ) -35 = 2 . 25 - 15 - 35 = 50 - 15 - 35 = 0

=> x = -5 là nghiệm của D(x)

b) F(x) = -5x - 6

F(x) = 0 <=> -5x - 6 = 0

             <=> -5x = 6

             <=> x = -6/5

c) E - ( 2x2 - 5xy2 + 3y3 ) = 5x2 + 6xy2 - 8y3

E = 5x2 + 6xy2 - 8y3 + 2x2 - 5xy2 + 3y3

E = 7x2 + xy2 -5y3

a, \(D\left(x\right)=2x^2+3x-35\)

\(D\left(-5\right)=2\left(-5\right)^2+3.\left(-5\right)-35=2.25-15-35=0\)

Vậy x = -5 là nghiệm của đa thức 

b, Sửa đề \(F\left(x\right)=-5x-6=0\)

\(x=-\frac{6}{5}\)

c, \(E-\left(2x^2-5xy^2+3y^3\right)=5x^2+6xy^2-8y^3\)

\(E-2x^2+5xy^2-3y^3=5x^2+6xy^2-8y^3\)

\(E=5x^2+6xy^2-8y^3+2x^2-5xy^2+3y^3\)

\(E=7x^2+xy^2-5y^3\)

26 tháng 3 2018

a) Vì P(x) + Q(x) = x5 – 2x2 + 1 nên

    Q(x) = x5 – 2x2 + 1 – P(x)

Giải bài 45 trang 45 SGK Toán 7 Tập 2 | Giải toán lớp 7

b) Vì P(x) – R(x) = x3 nên

    R(x) = P(x) – x3

Giải bài 45 trang 45 SGK Toán 7 Tập 2 | Giải toán lớp 7

 
26 tháng 3 2018

vì P (x) + Q ( x ) = x5-2x2+1 nen

Q ( x ) = x5 -2x2+1 - P (x )

vi P  (x) - R (x) = x3 nen

R (x) = P (x) - x3