\(|x+y-1000|\).( x - y -1017 )

Chứng minh rằng đa thức A có giá trị...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi 

* Nếu x và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)

\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)

Vậy A là số chẵn 

* Nếu x chẵn và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ ) 

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn ) 

Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x lẻ và y chẵn : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)

\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)

Lại có : 

\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)

\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)

Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn ) 

Vậy A là số chẵn 

* Nếu x và y lẻ : 

\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)

Ta có : 

\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)

\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)

\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)

Vậy A là số chẵn 

Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên 

Vậy A là số chẵn \(\forall x,y\inℤ\)

Chúc bạn học tốt ~ 

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

4 tháng 8 2017
(x+y)^2 - 4(x+y) + 1 = 3^2 - 4.3 +2 = -2
4 tháng 8 2017

Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước

Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) -  4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1  (1)

Thay x+y = 3 vào 1, có: 

3^2 - 4.3 + 1 = 9-12 + 1 = -2 

Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1  vs x+ y = 3 là -2

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

3 tháng 1 2020

có ai ko 

giúp mình với

3 tháng 1 2020

Để a xác định thì :\(x^2-2x\)khác 0

Nên \(x\left(x-2\right)\)khác 0

\(\Rightarrow x\)khacs0 và x khác 2

\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)

Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z

Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)

Để A thuộc Z thì \(x\varepsilon\)Ư(2)

Mà Ư(2) là 2 và -2

Vậy x=2 và x=-2 thì A thuộc Z

Chúc bạn học tốt nhé!

15 tháng 12 2020

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

  =[(x+y)(x+4y)] [(x+2y)(x+3y)]+y4

  =(x2+5xy+4y2) (x2+5xy+6y2)+y4

Gọi x2+5xy+4y2=a

\(\Rightarrow\)a(a+2y2)+y4

  =a2+2ay2+y4

  =(y2)2+2ay2+a2

  =(a+y2)2 

  =(x2+5xy+4y2+y2)2

  =(x2+5xy+5y2)2 là SCP