Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A\)là phân số thì \(\left(n+4\right)\ne0\)
b) Để \(A\)là số nguyên tthì \(3\)phải chia hết cho \(n+4\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n+4=1\Rightarrow n=1-4=-3\)
\(n+4=-1\Rightarrow n=-1-4=-5\)
\(n+4=3\Rightarrow n=3-4=-1\)
\(n+4=-3\Rightarrow n=-3-4=-7\)
Vậy \(n\in\left\{-3;-5;-1;-7\right\}\)thì \(A\)là số nguyên
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
\(D=\frac{n+1}{n-3}\)
\(D=\frac{n-3+4}{n-3}\)
\(D=1+\frac{4}{n-3}\)
để \(D\in Z\)thì \(\frac{4}{n-3}\in Z\)
\(\Leftrightarrow n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{\pm1;\pm2;\pm4\right\}\)
+ \(n-3=1\Leftrightarrow n=4\)
những cái sau tương tự
Có \(D=\frac{n+1}{n-3}\)( điều kiện để D tồn tại : \(n\ne3\))
Có D thuộc Z <=> \(\frac{n+1}{n-3}\inℤ\Leftrightarrow\frac{n-3+4}{n-3}\inℤ\Leftrightarrow1+\frac{4}{n-3}\inℤ\)
\(\Leftrightarrow\frac{4}{n-3}\inℤ\Leftrightarrow n-3\inƯ\left(4\right)\)(Vì \(n\in Z\Rightarrow n-3\inℤ\))
Mà \(Ư\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\Rightarrow n-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow n\in\left\{4;5;7;2;1;-1\right\}\)( thỏa mãn điều kiện n khác 3 và n thuộc Z)
Vậy \(n\in\left\{4;5;7;2;1;-1\right\}\)thì D thuộc Z