Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
de lam ban a nhe lam theo cach sau nhe b1 tra tren mang oke hoi ngu occcccccccccccccccccccc chooooooooooooooooooô vua thoi an bullllllllllllllllllllllllshittttttttttttttttttttttttttttttdi ban co nghia la an cut trau ay
a: Xét ΔABM vuông tại B và ΔAEM vuông tại E có
AM chung
AB=AE
Do đó: ΔABM=ΔAEM
Suy ra: MB=ME
hay ΔMBE cân tại M
b: Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: MB=ME
nên M nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra AM là đường trung trực của BE
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b)
Ta có: ΔAHB=ΔAHC(cmt)
nên HB=HC(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC
Xét ΔABC có
H là trung điểm của BC(cmt)
HD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(gt)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Xét ΔADH có HD=AD(cmt)
nên ΔADH cân tại D(Định nghĩa tam giác cân)
A B C M N H E
a/
MN//BC (gt)
\(\Rightarrow\widehat{BMN}=\widehat{BAC}=60^o\) (Góc đông vị)
\(\widehat{BNM}=\widehat{BCA}=60^o\) (góc đồng vị)
\(\widehat{ABC}=60^o\)
\(\Rightarrow\widehat{BMN}=\widehat{BNM}=\widehat{ABC}=60^o\)
=> tg BMN là tg đều => BM = BN
Ta có
AM = AB-BM; CN = BC-BN
Mà AB = BC
=> AM=CN (1)
tg BMN là tg đều nên 3 đường cao cũng đồng thời là 3 đường phân giác; 3 đường trung tuyến => H cũng đồng thời là trọng tâm của tg BMN
Gọi h là đường cao của tg BMN
=> \(HM=HN=\dfrac{2}{3}h\) (2)
\(\widehat{BMH}=\widehat{NMH}=\widehat{MNH}=\widehat{BNH}=\dfrac{60^o}{2}=30^o\)
\(\widehat{AMN}=180^o-\widehat{BMN}=180^o-60^o=120^o\)
\(\widehat{CNM}=180^o-\widehat{BNM}=180^o-60^o=120^o\)
\(\widehat{AMH}=\widehat{AMN}+\widehat{NMH}=120^o+30^o=150^o\)
\(\widehat{CNH}=\widehat{CNM}+\widehat{MNH}=120^o+30^o=150^o\)
\(\Rightarrow\widehat{AMH}=\widehat{CNH}\) (3)
Từ (1) (2) (3) => tg AHM = tg CHN (c.g.c)
b/