K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Cho a',b',c' là số đo cạnh của tam giác A'B'C'
       a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là:  \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)

19 tháng 4 2020

A B C A' B' C'

a, Gọi CV tam giác A'B'C' là P', ABC là P

\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)

Áp dụng t/c DTSBN , ta có  :

\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)

Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)

20 tháng 4 2020

Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

14 tháng 4 2020

AB = 18; BC = 21; CA =12  (gt)

=> chu vi tg ABC là : 18 + 12 + 21 = 51

tam giác ABC ~ tam giác A'B'C'   (gt)

=> AB/A'B' = AC/A'C' = BC/B'C' = C ABC/C A'B'C 

=> AB/A'B' = AC/C'A' = BC/B'C' = 3/4

xong tự tính ra 

22 tháng 4 2017

ABABABA′B′ = BCBCBCB′C′= CACACAC′A′= 3/2

=> ∆ABC ∽ ∆A'B'C'

b) CABCCABCCABCCA′B′C′= 3/2

22 tháng 4 2017

a)Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}\)

\(\Rightarrow\Delta ABC\)\(\Delta A'B'C'\)(c.c.c)

b)Từ câu a và áp dụng tính chất tỉ lệ thức ta có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}=\dfrac{AB+BC+AC}{A'B'+B'C'+A'C'}=\dfrac{3}{2}\)

mà \(C_{ABC}=AB+BC+AC\)

\(C_{A'B'C'}=A'B'+B'C'+A'C'\)

Vậy tỉ số chu vi của \(\Delta ABC\) và \(\Delta A'B'C'\)là:

\(\dfrac{C_{ABC}}{C_{A'B'C'}}=\dfrac{3}{2}\)