Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
\(\left\{{}\begin{matrix}c^2-2ca+a^2+2ab-2bc=a^2\\c^2-2bc+b^2+2ab-2ac=b^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-c\right)^2+2b\left(a-c\right)=a^2\\\left(b-c\right)^2+2a\left(b-c\right)=b^2\end{matrix}\right.\)
\(\Rightarrow\frac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)
\(=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\)
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
a) \(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc\)
\(=\left(ab^2+abc+ba^2\right)+\left(ac^2+ca^2+abc\right)+\left(bc^2+abc+cb^2\right)\)
\(=ab\left(b+c+a\right)+ac\left(c+a+b\right)+bc\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+ac+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc-abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(abc+cb^2\right)+\left(abc+ca^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+cb\left(a+b\right)+ca\left(b+a\right)\)
\(=\left(a+b\right)\left(ab+c^2+bc+ac\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(c+b\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+3a^2.2b+3a4b^2+8b^3\right)-b\left(8a^3+3.4a^2.b+3.2a.b^2+b^3\right)\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)-8ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2+6ab-8ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2-2ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)
\(=\left(a-b\right)^3\left(a+b\right)\)
\(c^2+2\left(ab-bc-ac\right)\Leftrightarrow-c^2=\left(ab-bc-ac\right)\)
Ta có : \(2a^2-2ac+c^2=a^2-c^2+c^2+\left(a-c\right)^2=a^2+c^2+2\left(ab-bc-ac\right)+\left(a-c\right)^2\)
\(=\left(a^2-2ac+c^2\right)+2b\left(a-c\right)+\left(a-c\right)^2=\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2\)
\(=\left(a-c\right)\left(2a-2c+2b\right)=2\left(a-c\right)\left(a+b-c\right)\)
Tương tự ở mẫu số ta cũng có : \(2b^2-2bc+c^2=2\left(b-c\right)\left(a+b-c\right)\)
\(\Rightarrow\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{2\left(a-c\right)\left(a+b-c\right)}{2\left(b-c\right)\left(a+b-c\right)}=\frac{a-c}{b-c}\)
Bít chết liền