Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để y là số nguyên thì \(2x-4+7⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
Khi x=3 thì \(y=\dfrac{2x+3}{x-2}=\dfrac{2\cdot3+3}{3-2}=9\)
Khi x=1 thì \(y=\dfrac{2\cdot1+3}{1-2}=\dfrac{7}{-1}=-7\)
Khi x=9 thì \(y=\dfrac{2\cdot9+3}{9-2}=\dfrac{21}{7}=3\)
Khi x=-5 thì \(y=\dfrac{2x+3}{x-2}=\dfrac{-10+3}{-5-2}=1\)
Vậy: A={9;-7;3;1}
a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}
b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}
\(A=\left\{1;6\right\}\) ; \(B=\left(-4;4\right)\)
\(A\cup B=\left(-4;4\right)\cup\left\{6\right\}\)
\(A\cap B=\left\{1\right\}\)
\(A\backslash B=\left\{6\right\}\)
\(B\backslash A=\left(-4;1\right)\cup\left(1;4\right)\)
đăng nhầm mục?
Câu 1: a) Có: \(\sqrt{x}\ge0\Rightarrow\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)
''='' xảy ra khi x = 0
Vậy \(P_{min}=\dfrac{1}{2}\) khi x = 0
b) Có: \(-2\sqrt{x-1}\le0\Rightarrow7-2\sqrt{x-1}\le7\)
''='' xảy ra khi x = 1
Vậy \(Q_{max}=7\) khi x = 1
Câu 2: \(M\in Z\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}\in Z\\\sqrt{x-1}⋮2\end{matrix}\right.\)
mà \(x< 50\) => Để \(\left\{{}\begin{matrix}\sqrt{x-1}\in Z\\\sqrt{x-1}⋮2\end{matrix}\right.\) thì \(x-1=\left\{4;16;36\right\}\)
\(\Rightarrow x=\left\{5;17;37\right\}\)
Vậy....
\(B=\left\{-3;-2;-1;0;1;2;3;4\right\}\)
Để \(B\cap C=\varnothing\Leftrightarrow a\in D\)
Với \(D=\left\{x\in Z;x\le-4\right\}\)
a) ta có : \(C=\dfrac{x-3}{x+6}=\dfrac{x+6-9}{x+6}=1-\dfrac{9}{x+6}\) là phân số
\(\Leftrightarrow\dfrac{9}{x+6}\) là số phân số \(\Leftrightarrow x+6\ne\) ước của 9 là \(\pm1;\pm3;\pm9\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+6\ne1\\x+6\ne-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+6\ne3\\x+6\ne-3\end{matrix}\right.\\\left\{{}\begin{matrix}x+6\ne9\\x+6\ne-9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ne-5\\x\ne-7\end{matrix}\right.\\\left\{{}\begin{matrix}x\ne-3\\x\ne-9\end{matrix}\right.\\\left\{{}\begin{matrix}x\ne3\\x\ne-15\end{matrix}\right.\end{matrix}\right.\) vậy .........................................
b) ta có : \(C=\dfrac{x-3}{x+6}=\dfrac{x+6-9}{x+6}=1-\dfrac{9}{x+6}\) nguyên
\(\Leftrightarrow\dfrac{9}{x+6}\) nguyên \(\Leftrightarrow x+6\) thuộc ước của 9 là \(\pm1;\pm2;\pm3\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+6=1\\x+6=-1\end{matrix}\right.\\\left[{}\begin{matrix}x+6=3\\x+6=-3\end{matrix}\right.\\\left[{}\begin{matrix}x+6=9\\x+6=-9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=-5\\x=-7\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\\\left[{}\begin{matrix}x=3\\x=-15\end{matrix}\right.\end{matrix}\right.\) vậy ..............................................