K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}\cos 2a = \frac{1}{3} \Leftrightarrow {\cos ^2}a - {\sin ^2}a = \frac{1}{3}\,\,\left( 1 \right)\\{\cos ^2}a + {\sin ^2}a = 1\,\,\,\,\left( 2 \right)\end{array}\)

Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}{\cos ^2}a = \frac{2}{3}\\{\sin ^2}a = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos a =  \pm \frac{{\sqrt 6 }}{3}\\\sin a =  \pm \frac{{\sqrt 3 }}{3}\end{array} \right.\)

Do \(\frac{\pi }{2} < a < \pi \)\( \Rightarrow \left\{ \begin{array}{l}\cos a = \frac{{-\sqrt 6 }}{3}\\\sin a =  \ \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\(\Rightarrow \tan a = \frac{{\sin a}}{{\cos a}} =  - \frac{{\sqrt 2 }}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a  = 1\)

 \(\Leftrightarrow \frac{1}{9} + {\cos ^2}a  = 1\)

\(\Leftrightarrow {\cos ^2}a =  1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a  =\pm\sqrt { \frac{8}{9}}  =  \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} =  - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) =  - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} =  - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 =  - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 =  - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\({\cos ^2}a + {\sin ^2}a = 1 \Rightarrow \sin a =  \pm \frac{4}{5}\)

Do \(0 < a < \frac{\pi }{2} \Leftrightarrow \sin a = \frac{4}{5}\)

\(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{4}{3}\)

Ta có;

\(\begin{array}{l}\sin \left( {a + \frac{\pi }{6}} \right) = \sin a.\cos \frac{\pi }{6} + \cos a.\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\cos \left( {a - \frac{\pi }{3}} \right) = \cos a.\cos \frac{\pi }{3} + \sin a.\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a.tan\frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} =  - 7\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{1}{3}}  =  - \frac{{\sqrt 6 }}{3}\)

Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} =  - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} =  - \frac{{\sqrt 3  + 3\sqrt 2 }}{6}\)

b) Vì \(\pi  < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{9}}  =  - \frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)

Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2  - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}} = \frac{{\sin \left( {\frac{\pi }{{15}} + \frac{\pi }{{10}}} \right)}}{{\cos \left( {\frac{{2\pi }}{{15}} + \frac{\pi }{5}} \right)}} = \frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{3}}} = 1\)

b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8} = \frac{1}{2}\sin \frac{\pi }{{16}}.\cos \frac{\pi }{{16}}.\cos \frac{\pi }{8} = \frac{1}{4}\sin \frac{\pi }{8}.\cos \frac{\pi }{8} = \frac{1}{8}\sin \frac{\pi }{4} = \frac{1}{8}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{{16}}\;.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)

\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) =  - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B =  - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) =  - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) =  - \frac{3}{8}\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

 \(\begin{array}{l}{\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha  =  \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)

Do \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \cos \alpha  =  - \frac{{3\sqrt {13} }}{{13}}\)

Ta có: \(\begin{array}{l}\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha  =  - \frac{{2\sqrt {13} }}{{13}}\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)

\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha  + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha  =  \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  =  \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

Vì \( - \frac{\pi }{2} < \alpha  < 0\) nên \(sin\alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{2\sqrt 2 }}{3}\).

\(b)\;\,sin2\alpha  = 2sin\alpha .cos\alpha  = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} =  - \frac{{4\sqrt 2 }}{9}\)

\(c)\;cos(\alpha  + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6  + 1}}{6}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\\A = \sin \left( {a - 17^\circ  - a - 13^\circ } \right) = \sin \left( { - 30^\circ } \right) =  - \frac{1}{2}\end{array}\)

\(\begin{array}{l}B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\\B = \cos \left( {b + \frac{\pi }{3} + \frac{\pi }{6} - b} \right) = \cos \frac{\pi }{2} = 0\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: VT = \(\cos \left( {\frac{\pi }{3} - \frac{\pi }{6}} \right) = \cos \frac{\pi }{{6}} =  \frac{{\sqrt 3 }}{2}\)

\(VP = \cos \frac{\pi }{3}\cos \frac{\pi }{6} + \sin \frac{\pi }{3}\sin \frac{\pi }{6} = \frac{{1 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2}.\frac{1}{2} =  \frac{{\sqrt 3 }}{2} = VT\)

Vậy \(\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\)

b) Ta có: \(\cos \left( {a + b} \right) = \cos (a--b) = \cos a\cos \left( { - b} \right) + \sin a\sin \left( { - b} \right) = \cos a\cos b - \sin a\sin b\)

c) Ta có: \(\sin \left( {a - b} \right) = \cos \left[ {\frac{\pi }{2} - \left( {a - b} \right)} \right] = \cos \left[ {\left( {\frac{\pi }{2} - a} \right) + b} \right] = \cos \left( {\frac{\pi }{2} - a} \right)\cos b + \sin \left( {\frac{\pi }{2} - a} \right)\sin b\)

     \( = \left( {\cos \frac{\pi }{2}\cos a + \sin \frac{\pi }{2}\sin a} \right)\cos b + \sin \left( {\frac{\pi }{2} - a} \right)\sin b = \sin a\cos b + \cos a\sin b\)