K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2023

a.

\(u_5=18\Rightarrow u_1+4d=18\) (1)

\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)

\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)

\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)

Thế (2) vào (1):

\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)

b.

Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)

Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:

\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)

\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)

\(\Rightarrow a^2+8a+7=a^2+6a+9\)

\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)

NV
13 tháng 12 2018

a/

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(u_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

b/ \(u_n=\dfrac{1}{1^2+3}+\dfrac{1}{2^2+6}+...+\dfrac{1}{n^2+3n}=\dfrac{1}{1.4}+\dfrac{1}{2.5}+...+\dfrac{1}{n\left(n+3\right)}\)

\(u_n=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\right)\)

\(u_n=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\right)\)

\(\Rightarrow lim\left(u_n\right)=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{11}{18}\)

7 tháng 9 2017

a5 là số hạng thứ 6 trg khai triển

-số hạng t6 trg khai triển <=> Tk+1=6 <=>k+1=6 => k=5

vậy a5= C564x6

7 tháng 9 2017

đợi mk tí

22 tháng 8 2023

S= u1.u+ u2.u2+...+un.u

S = u1.(u- d) + u2.(u3 - d)+...+un(un+1 - d)

S = u1.u2 + u2.u+...+un.un+1-d(u1+u2+...+un)

Đặt A = u2.u3 + u3.u4+...+un.un+1

3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1

3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u- u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1

3d.A = un.un+1.un+2 - u1.u2.u3

3d.A = (u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d) 

A = [(u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d) 

S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2 

 

     
NV
26 tháng 2 2020

a/ \(S=5.15-2+5.16-2+...+5.40-2\)

\(=5\left(15+16+...+40\right)-2.26\)

\(=5.715-2.26=3523\)

b/ \(S=5\left(2+4+...+30\right)-2.29\)

\(=5.240-2.29=1142\)

NV
26 tháng 2 2020

\(\left\{{}\begin{matrix}u_1+u_1+6d=8\\u_1+3d+u_1+4d=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u_1+6d=8\\2u_1+7d=11\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-5\end{matrix}\right.\)

\(S=u_1+7d+u_1+9d+...+u_1+35d\)

\(S=15u_1+\left(7+9+...+35\right)d=15u_1+308d=849\)