Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_3+u_7+...+u_{35}=u_1q^2+u_1q^6+...+u_1q^{34}\)
\(=u_1q^2\left(1+q^4+q^8+...+q^{32}\right)=u_1q^2.\frac{\left(q^4\right)^9-1}{q^4-1}=524286\)
2/ \(u_1^2+u_2^2+...+u_{20}^2=u_1^2+u_1^2q^2+u_1^2q^4+...+u_1^2q^{38}\)
\(=u_1^2\left(1+q^2+q^4+...+q^{38}\right)=u_1^2\frac{\left(q^2\right)^{20}-1}{q^2-1}=\frac{3^{20}-1}{2}\)
3/
\(u_1=2;u_n=18\)
\(u_1^2+u_2^2+...+u_n^2=484\)
\(\Leftrightarrow u_1^2+u_1^2q^2+...+u_1^2q^{2\left(n-1\right)}=484\)
\(\Leftrightarrow u_1^2\left(1+q^2+...+q^{2\left(n-1\right)}\right)=484\)
\(\Leftrightarrow1+q^2+...+q^{2\left(n-1\right)}=121\)
\(\Leftrightarrow\frac{q^{2n}-1}{q^2-1}=121\)
Mà \(u_n=u_1q^{n-1}\Rightarrow q^{n-1}=\frac{u_n}{u_1}=9\Rightarrow q^n=9q\Rightarrow q^{2n}=81q^2\)
\(\Rightarrow\frac{81q^2-1}{q^2-1}=121\Rightarrow81q^2-1=121q^2-121\)
\(\Rightarrow q^2=3\Rightarrow q=\pm\sqrt{3}\)
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) vào ta được:
\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)
\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)
Câu 2:
\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)
Đạo hàm 2 vế:
\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)
Thay \(x=1\) ta được:
\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)
\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)
\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)
Hệ số của 2 số hạng liên tiếp là \(C_n^k\) và \(C_n^{k+1}\)
\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)
\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)
\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)
\(\Rightarrow n_{min}=11\) khi \(k=4\)
2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)
\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)
Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)
Đề bài xấu quá
\(x^3-3x^2+\left(2m-2\right)x+m-3=0\Leftrightarrow x^3-3x^2-2x-3=-m\left(2x+1\right)\)
Do \(x=-\frac{1}{2}\) ko phải nghiệm nên: \(\frac{x^3-3x^2-2x-3}{2x+1}=-m\)
Đặt \(y=f\left(x\right)=\frac{x^3-3x^2-2x-3}{2x+1}\Rightarrow f'\left(x\right)=\frac{4x^3-3x^2-6x+4}{\left(2x+1\right)^2}\)
\(f'\left(x\right)=0\) có 2 nghiệm xấp xỉ: \(x_I\approx-1,2\) ; \(x_{II}\approx0,6\); \(x_{III}\approx1,3\)
Ta có BBT:
Từ BBT ta thấy để pt \(f\left(x\right)=-m\) có 3 nghiệm thỏa mãn \(x_1< -1< x_2< x_3\)
\(\Leftrightarrow-m>5\Leftrightarrow m< -5\)
dạ th ơi cho e hỏi, tại sao suy ra được f(x') với điều kiện -m>5 vậy ạ ?
Lời giải:
Đặt $u_2=a$.
$u_2^2+u_3^2+u_4^2=a^2+(a-3)^2+(a-6)^2=3a^2-18a+45$
$=3(a-3)^2+18\geq 18$
Vậy $u_2^2+u_3^2+u_4^2$ đạt min =18 khi $a-3=0\Leftrightarrow a=3$
Tổng 100 số hạng đầu tiên:
$S_{100}=u_1+u_2+u_3+...+u_{100}$
$=(u_2-d)+u_2+(u_2+d)+(u_2+2d)+...+(u_2+98d)$
$=100u_2+(-1+0+1+2+...+98)d$
$=100.3+4850(-3)=-14250$