K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2015

ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3

x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)

= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1 

=> x+y = 0 hoặc xy +z = 0

Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013

Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1

x = 1 => z = -y làm tương tự như trên

* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ

22 tháng 11 2016

Bạn Trần thị Loan trả lời sai mất rồi

10 tháng 8 2018

Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)

Tương tự:\(-1\le y\le1;-1\le z\le1\)

Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)

\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị

\(\Rightarrow S=2020\)

5 tháng 5 2020

bạn chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/60436537466.html

12 tháng 2 2020

Ta có: \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

<=> \(\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

<=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

<=> \(\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\) 

<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\\z=\frac{1}{z}\end{cases}}\)

<=> \(\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\)

<=> x = y = z = \(\pm\)1

Với x = y = z = 1 => P = 12018 + 12019 + 12020 = 3

     x = y = z = -1 => P = (-1)2018 + (-1)2019 + (-1)2020 = 1

Vậy ...