K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

sorry  mk mới lớp 8

31 tháng 8 2018

Ta có : x + y = 1 => y = 1 - x

Do đó: \(0\le x\le1\)

\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)

\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Min A = 1/2

Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)

Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)

\(\Rightarrow A=2x\left(x-1\right)+1\le1\)

Max A =1

Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)

=.= hok tốt!!

19 tháng 12 2018

\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)

\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).

Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi  \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)

 +,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)

+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)

Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)

Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)

 +,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)

 +,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)

19 tháng 12 2018

M=3xy+y2=21​(x2+23​xy+3y2)−21​x2−21​y2

=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21​(x+3​y)2−21​≥−21​.

Nên GTNN của M là -\frac{1}{2}−21​ đạt được khi  x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3yx2=3y2⇒4y2=1⇒y=±21​

 +,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21​⇒x=−23​​

+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21​⇒x=23​​

Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2​+y2=23x2+3y2​=23​

Nên GTLN của M là \frac{3}{2}23​ đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21​

 +,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21​⇒y=23​​

 +,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21​⇒y=−23​​

21 tháng 5 2019

ai giải = cách tam thức bậc 2 càng tốt nha mình k mạnh cho

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3

1 tháng 6 2015

+)  Áp dụng BĐT Bu nhia có:

(x + y)2 = (x .1 + y .1)2 \(\le\) (x2 + y2). (12 + 12

=> 1\(\le\)  2.(x2 + y2) => x2 + y2 \(\ge\) 1/2 

Min A = 1/2 khi x  = y = 1/2

+) A = x2 + y2 = (x+y)2 - 2xy \(\le\)  (x+y) = 1 (Vì x; y \(\ge\) 0 và  x+y=1 )

=> Max A = 1 khi x.y = 0 <=> x = 0 hoặc y = 0

Vậy Max A = 1 khi x = 0; y = 1 hoặc x = 1; y = 0

14 tháng 1 2021

Do x,y∈Z và 3x+2y=1 ⇒xy<0

3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)

Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)

⇒x = 1 - 2t ; y = 3t - 1

khi đó : H = t\(^2\) -3t + |t| -1

nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2

Dấu "=" xảy ra ⇔t=1

nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2

vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)