Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+y^2+2xy-8x-6y+10=0\)
\(\Rightarrow2.\left(2x^2+y^2+2xy-8x-6y+10\right)=0\)
\(\Rightarrow4x^2+2y^2+4xy-16x-12y+20=0\)
\(\Rightarrow\left(4x^2+y^2+16+4xy-8y-16x\right)+\left(y^2-4y+4\right)=0\)
\(\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x+y-4\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2\ge0\forall x;y\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+y=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}2x+2=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Chúc bạn học tốt.
\(5x^2+5y^2+8xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)
\(\Rightarrow x=-1;y=1\)
Khi đó:
\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)
\(=1\)
Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$
$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$
$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$
$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$
Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$
$\Rightarrow x-y-6=y-1=0$
$\Rightarrow y=1; x=7$
$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$
$=2021-8=2013$
\(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)
Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
\(\Leftrightarrow4x^2+8xy+4y^2+x^2+2x+1+y^2-2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\Rightarrow M=1\)