Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số thực x,y,z \(\ge\)1 và thỏa mãn \(3x^2+4y^2+5z^2=52\).Tìm GTNN của biểu thức:
\(F=x+y+z\)
Lời giải:
Đặt \((x,y,z)=(a+1,b+1,c+1)⇒a,b,c≥0\)
Ta có:
\(3x^2+4y^2+5z^2=52\)
\(⇔3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)
\(⇔3a^2+4b^2+5c^2+6a+8b+10c=40\)
\(⇔5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)
Do đó \(x+y+z=a+b+c+3≥5\)
Vậy Fmin\(=5⇔x=y=1,z=3\)
Từ giả thiết suy ra
\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\) (1)
Lại có \(3x^2+4y^2+5z^2=52\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)
\(\Rightarrow x^2+y^2+z^2\ge11\) (2)
Từ (1) và (2) ta có \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)
\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)
\(\Leftrightarrow P^2-4P-5\ge0\)
\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)
\(\Rightarrow P\ge5\)
Vậy \(P_{min}=5\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)
lại bị trùng rồi quỳnh ơi , https://olm.vn/hoi-dap/detail/76355556031.html
Câu hỏi của Con Heo - Toán lớp 8 - Học trực tuyến OLM
Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)
Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)
\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)
\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)
Hay là:
\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)
Việc còn lại là của mọi người.
Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)
Ta có :
\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)
\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)
\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)
\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)
Do đó \(x+y+z=a+b+c+3\ge5\)
Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)
Chúc bạn học tốt !!!
Bớt copppy đưa link tử tế cái :)))):
Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...
Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net
Search mạng đầy vler :333