K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Mất 1 tiếng sau khi nhìn cái đề mới giải đc 

Ta có \({u+v}≥ 2uv\)

       \(=>{(u+v)^2-2uv}≥2uv\)

           \(<=>{(u+v)^2/ 2}≥ 2uv\)

         Và \({(u+v)^2/4}≥uv\)

\(P= {u^2+v^2}+{33 \over uv}\)

\(≥ {2uv}+{33\over uv}\)

\(={(u+v)^2 \over 2}+{33/{(u+v)^2 \over 4}}\)

Thế số vào ta sẽ đc kết quả \({65 \over 4}\)

Vậy GTNN của P là 65/4 khi u=v = 2

8 tháng 3 2018

Sai!

Ta có \(P=u^2+v^2+\frac{33}{uv}\)

\(\ge\frac{\left(u+v\right)^2}{2}+\frac{33}{\frac{\left(u+v\right)^2}{4}}\)

\(=\frac{4^2}{2}+\frac{33}{\frac{4^2}{4}}=\frac{65}{4}\)

"=" <=> u=v=2 

25 tháng 10 2015

A = \(\frac{2x+3y}{2x+y+2}\) 

<=> A(2x + y + 2) = 2x + 3y 

<=> 2x.A + y.A + 2.A = 2x + 3y

<=> 2x(1 - A) + (3 - A).y = 2.A

Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]< (4x+ y2) .[(1 - A)+ (3 - A)2

=> (2.A)< 2A2 -8A + 10

<=> - 2A- 8A  + 10 > 0

<=> A+ 4A - 5 <

<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1

Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y= 1 => x ; y

Max A = 1 tại....

 

 

12 tháng 5 2019

Câu a em nghĩ có thể làm như vầy ạ,câu b để sau (em mới lớp 7,cần suy ra nghĩ thêm)

a)ĐKXĐ: x > 4; \(y\ne2\) 

Đặt \(\frac{1}{\sqrt{x-4}}=a;\frac{1}{y+2}=b\)

Hệ phương trình trở thành: \(\hept{\begin{cases}3a+4b=7\\5a-b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+4b=7\\20a-4b=16\end{cases}}\)

Cộng theo vế với vế của hai phương trình trong hệ,ta được: \(23a=7+16=23\Rightarrow a=1\Rightarrow b=1\)

Đến đây dễ rồi ạ.

12 tháng 5 2019

b) 

\(u^2+v^2+2uv=65-56=9=\left(u+v\right)^2=9\Rightarrow\orbr{\begin{cases}u+v=3\\u+v=-3\end{cases}}\)

\(u^2+v^2-2uv=65+56=121=\left(u-v\right)^2=121\Rightarrow\orbr{\begin{cases}u-v=11\\u-v=-11\end{cases}}\)

tự làm tiếp 

13 tháng 11 2018

1

do x,y bình đẳng như nhau giả sử \(x\ge y\)

Ta có:x2018+y2018=2

mà \(x^{2018}\ge0,y^{2018}\ge0\)

\(\Rightarrow x^{2018}+y^{2018}\ge0\)

Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)

Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)

\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)

\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)

Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)

Vậy........................

13 tháng 11 2018

x,y có nguyên đâu mà bạn giải như vậy

29 tháng 5 2017

Ta có: \(\hept{\begin{cases}\left(\sqrt{u^2+2}+u\right)\left(\sqrt{u^2+2}-u\right)=2\\\left(\sqrt{v^2-2v+3}+v-1\right)\left(\sqrt{v-2v+3}-v+1\right)=2\end{cases}}\)

Theo đề bài thì ta có:

\(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)

Từ đây ta có hệ:

\(\hept{\begin{cases}\sqrt{u^2+2}-u=\sqrt{v^2-2v+3}+v-1\left(1\right)\\\sqrt{u^2+2}+u=\sqrt{v^2-2v+3}-v+1\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được: \(u+v=1\)

Ta có: \(u^3+v^3+3uv=1\)

\(\Leftrightarrow3uv+u^2-uv+v^2=1\)

\(\Leftrightarrow\left(u+v\right)^2=1\)(đúng)

\(\Rightarrow\)ĐPCM

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

- Nếu u + v = -11 và uv = 18 thì u và v là hai nghiệm của phương trình \(x^2+11x+18=0\). Suy ra u = - 2, v = -9 hoặc u = -9; v = -2

12 tháng 5 2019

a) Đặt \(a=\frac{1}{\sqrt{x-4}},b=\frac{1}{y+2}\) từ đây ta có

\(\Rightarrow\left\{{}\begin{matrix}3a+4b=7\\5a-1b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a+4b=7\\20a-4b=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}23a=23\\3a+4b=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\).

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-4}}=1\\\frac{1}{y+2}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=1\\y+2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

12 tháng 5 2019

b) Theo đề bài ta có hệ pt

\(\left\{{}\begin{matrix}u^2+v^2=65\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(u+v\right)^2-uv=65\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=65+2.\left(-28\right)=9\\uv=-28\end{matrix}\right.\)

TH1 : \(\left\{{}\begin{matrix}u+v=3\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=3-v\\\left(3-v\right)v=-28\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v=-4\Rightarrow u=7\\v=7\Rightarrow u=-4\end{matrix}\right.\)

TH2 \(\left\{{}\begin{matrix}u+v=-3\\uv=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=-3-v\\\left(-3-v\right)v=-28\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v=-7\Rightarrow u=4\\v=4\Rightarrow u=-7\end{matrix}\right.\)

Vậy .......