Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c\le1\) nên ta có:
\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)
Từ đó suy ra:
\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)
Ta có ĐPCM
2.
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)
\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)
\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)
\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1.
Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)
\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)
Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)
Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0
bạn thử giải hộ mình mấy bài này vs
https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162
Đặt \(THANG=ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\) :v
Vì \(0\le a;b;c\le1\)\(\Rightarrow\left\{{}\begin{matrix}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow THANG\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)
Vì \(a+b+c\ge2\) nên \(a+b+c-1\ge1\). Vậy \(THANG\ge2\cdot1=2\)
Đẳng thức xảy ra khi trong 3 số \(a;b;c\) có 2 số bằng 1 và một số bằng 0
không phải nha!
là a,b,c ở trong khoảng từ 0 đến 1
Ở trong bài này thì dấu "=" xảy ra
khi (1-a)(1-b)(1-c) = 0 thì 1 trog 3 số bằng 1
abc = 0 thì có 1 số bằng 0 ( giả sử a = 0, b = 1 )
thay vào BĐT cuối thì ta đc :
\(1+c^3-c=1\)
\(\Rightarrow c\left(c+1\right)\left(c-1\right)=0\Rightarrow\left[{}\begin{matrix}c=0\\c=-1\\c=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=1\\c=0\end{matrix}\right.\)
Như vậy trog 3 số a,b,c có 2 số bằng 0, 1 số bằng 1 hoặc 1 số bằng 0, 2 số bằng 1.
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
P=a³+b³+c³-ab-bc-ca
Do 0≤a, b, c≤1 nên a³≤a²≤a, b³≤b²≤b, c³≤c²≤c
P≤a²+b²+c²-ab-bc-ca
(a+b+c).P≤(a+b+c)(a²+b²+c²-ab-bc-ca)
=a³+b³+c³-3abc
≤a+b+c
→ P≤1
a,b,c∈[0,1]⇒b≥b2;c≥c3
Ta có:
a,b,c∈[0,1]⇒(1−a)(1−b)(1−c)≥0
⇔1−a−b−c+ab+bc+ca−abc≥0
⇔a+b+c−ab−bc−ca+abc≤1
⇒a+b2+c3−ab−bc−ca≤1
⇒đpcm
Dấu "=" xảy ra khi trong a,b,ccó 1 số bằng 1, 1 số bằng 0, số còn lại là 1 hoặc 0