Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)
CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)
=> P \(\ge a+b-2ab=4ab-2ab=2ab\)
Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)
=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)
<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)
=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = 1/2
Vậy MinP = 1/2 <=> a = b= 1/2
Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)
Mà \(a+b>0\Rightarrow a+b\ge1\)
Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = 1/2
\(P^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+3c+3\right)\)
\(=63\)
\(\Rightarrow P\le\sqrt{63}=3\sqrt{7}\).
Dấu \(=\)khi \(\hept{\begin{cases}4a+3=4b+3=4c+3\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\).
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
Em không chắc đâu nha!
Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)
Tương tự với y với z.Ta có:
\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=\left(x+y+z\right)+3=1+3=4\)
Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.
Vậy....
Đặt \(\left\{{}\begin{matrix}\sqrt{4a+1}=x\\\sqrt{4b+1}=y\end{matrix}\right.\) \(\Rightarrow1\le x;y\le3\)
\(\Rightarrow x^2+y^2=4\left(a+b\right)+2=10\)
Do \(1\le x\le3\Rightarrow\left(x-1\right)\left(x-3\right)\le0\Rightarrow x^2-4x+3\le0\)
\(\Rightarrow x^2+3\le4x\Rightarrow x\ge\frac{x^2+3}{4}\)
Tương tự, do \(1\le y\le3\Rightarrow y\ge\frac{y^2+3}{4}\)
\(\Rightarrow P=x+y\ge\frac{x^2+3}{4}+\frac{y^2+3}{4}=\frac{x^2+y^2+6}{4}=\frac{16}{4}=4\)
\(\Rightarrow P_{min}=4\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\) hay \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)
Tại sao lại có ĐK 1=<x;y=<3 v ạ