K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ điều kiện \(x+y+z+2=xyz\) ta có một đẳng thức rất đẹp là \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

\(\Rightarrow \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2(*)\)

(lớp 9 mình đã rất sung sướng khi phát hiện ra nó, dù không mới mẻ. Tất nhiên không thể tự nhiên mà có được đẳng thức như thế này, nó tùy thuộc vào khả năng suy luận ngược hoặc thói quen biến đổi các đẳng thức cơ bản)

Khi đó, áp dụng BĐT Bunhiacopxky ta có:

\((x+1+y+1+z+1)\left(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\right)\geq (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow 2(x+y+z+3)\ge (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow x+y+z+6\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=2\)

21 tháng 5 2020

Theo giả thiết: \(xyz=x+y+z+2\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)

\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)

Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)

BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bạn có thể tham khảo lời giải tại đây:

Câu hỏi của Toán Chuyên Học - Toán lớp 9 | Học trực tuyến

2 tháng 4 2021

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).

10 tháng 3 2020

Thay \(xy+yz+zx=5\) vào P, ta có:

\(P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bất đẳng thức Cô-si, ta có:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}\)

\(\sqrt{6\left(y+z\right)\left(y+x\right)}\le\frac{3\left(y+x\right)+2\left(y+z\right)}{2}\)

\(\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{\left(z+x\right)+\left(z+y\right)}{2}\)

Cộng vế theo vế các bất đẳng thức cùng chiều, ta đươc:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{9}{2}x+\frac{9}{2}y+3z\)

\(\Rightarrow P\ge\frac{3x+3y+2z}{\frac{9}{2}x+\frac{9}{2}y+3z}=\frac{3x+3y+2z}{\frac{3}{2}\left(3x+3y+2z\right)}=\frac{2}{3}\)

Dấu "=" khi \(\hept{\begin{cases}3\left(x+y\right)=2\left(y+z\right)=2\left(z+x\right)\\z+y=z+x\\xy+yz+zx=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}}\)

3 tháng 4 2020

helloo

3 tháng 4 2020

Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

Khi đó BĐT <=>

 \(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)

<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)

<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)

<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)

Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)

<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)

<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng

Khi đó (1) <=> 

\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\) 

<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)

Áp dụng buniacopxki cho vế phải ta có 

\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)

                                                                                                       \(=\sqrt{2\left(x+y+z\right)}\)

=> BĐT được CM

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

16 tháng 1 2020

\(VT\ge\frac{9}{\Sigma_{cyc}\sqrt{xy+x+y}}\ge\frac{9}{\sqrt{\left(1+1+1\right)\left(2x+2y+2z+xy+yz+zx\right)}}\ge\frac{9}{\sqrt{3\left[6+\frac{\left(x+y+z\right)^2}{3}\right]}}=\sqrt{3}\)