Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)
Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)
\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)
\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)
Dấu "=" xảy ra khi: x=y=z>0
Bài 2:
+) Với y=0 <=> x=0
Ta có: 1-xy= 12 (đúng)
+) Với \(y\ne0\)
Ta có: \(x^6+xy^5=2x^3y^2\)
\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)
\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)
\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)
Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)
Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);
\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)
\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)
\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)
Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);
\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);
\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)
Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?
Với cả từ dòng này xuống dòng này nữa.
Sao mà tin đc dấu " = " xảy ra khi nào vậy?
\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)
Áp dụng BĐ Svac-xơ, ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)
^_^
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{16}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{\sqrt{3}}\)
Áp dụng bđt AM - GM cho 3 số dương x;y;z ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow1\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{xyz}\Rightarrow\frac{1}{27}\ge xyz\)
Ta có :\(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\left(1+\frac{1}{z}\right)\)
\(=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}+\frac{1}{z}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x+y+z}{xyz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{xyz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\)
Mà \(xyz\le\frac{1}{27}\)\(\Rightarrow A\ge1+9+\frac{2}{\frac{1}{27}}=64\)(đpcm)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)
=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)
CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\)
<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)
<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)
<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)
<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)
<=> \(4-4\ge0\) (Luôn đúng)
=> ĐPCM
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{xz}+\frac{1}{yz}\ge\frac{\left(1+1\right)^2}{xz+yz}=\frac{4}{z\left(x+y\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{\frac{1}{4}}=16\)(2)
Từ (1) và (2) => \(\frac{1}{xz}+\frac{1}{yz}\ge\frac{4}{z\left(x+y\right)}\ge16\)=> \(\frac{1}{xz}+\frac{1}{yz}\ge16\)( đpcm )
Dấu "=" xảy ra <=> x = y = 1/4 ; z = 1/2